{"title":"地方品种和改良品种抗条锈病等位基因对小麦产量的影响","authors":"ElBasyoni Is","doi":"10.26420/annagriccropsci.2021.1084","DOIUrl":null,"url":null,"abstract":"Stripe rust is one of the most devastating biotic stresses to cause grain yield losses in wheat. In the current study, 227 imported accessions, and six widely grown modern cultivars (Sids14, Sids12, Misr1, Misr2, Giza171, and Gimmiza9), were used. All plant materials were planted in the field and evaluated for stripe rust resistance and grain yield. Five Simple Sequence Repeats (SSR) markers Xpsp3000, Xbarc8, Xgwm419, Xwmc44, and Xbarc32, respectively, are associated with five essential stripe rust resistance genes Yr10, Yr15, Yr26, Yr29, and Yr59, were also used. The results indicated a highly positive and significant correlation between grain yield and stripe rust resistance. Furthermore, as the number of stripe rust resistance alleles increased, both grain yield and stripe rust resistance increased. Out of the 233 accessions used, 11 accessions were found to contain the five resistance genes. The identified resistant accessions could be used as a gene source to enhance stripe rust resistance in wheat breeding programs. SSR markers used in the current study effectively capture a substantial part of the phenotypic variation caused by stripe rust. Thus, these five markers could be used effectively in marker-assisted selection for stripe rust resistance.","PeriodicalId":8133,"journal":{"name":"Annals of Agricultural & Crop Sciences","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Stripe Rust Resistance Alleles on Wheat Grain Yield Using Landraces and Improved Accessions\",\"authors\":\"ElBasyoni Is\",\"doi\":\"10.26420/annagriccropsci.2021.1084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stripe rust is one of the most devastating biotic stresses to cause grain yield losses in wheat. In the current study, 227 imported accessions, and six widely grown modern cultivars (Sids14, Sids12, Misr1, Misr2, Giza171, and Gimmiza9), were used. All plant materials were planted in the field and evaluated for stripe rust resistance and grain yield. Five Simple Sequence Repeats (SSR) markers Xpsp3000, Xbarc8, Xgwm419, Xwmc44, and Xbarc32, respectively, are associated with five essential stripe rust resistance genes Yr10, Yr15, Yr26, Yr29, and Yr59, were also used. The results indicated a highly positive and significant correlation between grain yield and stripe rust resistance. Furthermore, as the number of stripe rust resistance alleles increased, both grain yield and stripe rust resistance increased. Out of the 233 accessions used, 11 accessions were found to contain the five resistance genes. The identified resistant accessions could be used as a gene source to enhance stripe rust resistance in wheat breeding programs. SSR markers used in the current study effectively capture a substantial part of the phenotypic variation caused by stripe rust. Thus, these five markers could be used effectively in marker-assisted selection for stripe rust resistance.\",\"PeriodicalId\":8133,\"journal\":{\"name\":\"Annals of Agricultural & Crop Sciences\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Agricultural & Crop Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26420/annagriccropsci.2021.1084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Agricultural & Crop Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26420/annagriccropsci.2021.1084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Stripe Rust Resistance Alleles on Wheat Grain Yield Using Landraces and Improved Accessions
Stripe rust is one of the most devastating biotic stresses to cause grain yield losses in wheat. In the current study, 227 imported accessions, and six widely grown modern cultivars (Sids14, Sids12, Misr1, Misr2, Giza171, and Gimmiza9), were used. All plant materials were planted in the field and evaluated for stripe rust resistance and grain yield. Five Simple Sequence Repeats (SSR) markers Xpsp3000, Xbarc8, Xgwm419, Xwmc44, and Xbarc32, respectively, are associated with five essential stripe rust resistance genes Yr10, Yr15, Yr26, Yr29, and Yr59, were also used. The results indicated a highly positive and significant correlation between grain yield and stripe rust resistance. Furthermore, as the number of stripe rust resistance alleles increased, both grain yield and stripe rust resistance increased. Out of the 233 accessions used, 11 accessions were found to contain the five resistance genes. The identified resistant accessions could be used as a gene source to enhance stripe rust resistance in wheat breeding programs. SSR markers used in the current study effectively capture a substantial part of the phenotypic variation caused by stripe rust. Thus, these five markers could be used effectively in marker-assisted selection for stripe rust resistance.