机器生成电子邮件的分层标签传播和发现

James Bradley Wendt, Michael Bendersky, Lluis Garcia Pueyo, V. Josifovski, Balint Miklos, Ivo Krka, Amitabh Saikia, Jie Yang, Marc-Allen Cartright, Sujith Ravi
{"title":"机器生成电子邮件的分层标签传播和发现","authors":"James Bradley Wendt, Michael Bendersky, Lluis Garcia Pueyo, V. Josifovski, Balint Miklos, Ivo Krka, Amitabh Saikia, Jie Yang, Marc-Allen Cartright, Sujith Ravi","doi":"10.1145/2835776.2835780","DOIUrl":null,"url":null,"abstract":"Machine-generated documents such as email or dynamic web pages are single instantiations of a pre-defined structural template. As such, they can be viewed as a hierarchy of template and document specific content. This hierarchical template representation has several important advantages for document clustering and classification. First, templates capture common topics among the documents, while filtering out the potentially noisy variabilities such as personal information. Second, template representations scale far better than document representations since a single template captures numerous documents. Finally, since templates group together structurally similar documents, they can propagate properties between all the documents that match the template. In this paper, we use these advantages for document classification by formulating an efficient and effective hierarchical label propagation and discovery algorithm. The labels are propagated first over a template graph (constructed based on either term-based or topic-based similarities), and then to the matching documents. We evaluate the performance of the proposed algorithm using a large donated email corpus and show that the resulting template graph is significantly more compact than the corresponding document graph and the hierarchical label propagation is both efficient and effective in increasing the coverage of the baseline document classification algorithm. We demonstrate that the template label propagation achieves more than 91% precision and 93% recall, while increasing the label coverage by more than 11%.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Hierarchical Label Propagation and Discovery for Machine Generated Email\",\"authors\":\"James Bradley Wendt, Michael Bendersky, Lluis Garcia Pueyo, V. Josifovski, Balint Miklos, Ivo Krka, Amitabh Saikia, Jie Yang, Marc-Allen Cartright, Sujith Ravi\",\"doi\":\"10.1145/2835776.2835780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-generated documents such as email or dynamic web pages are single instantiations of a pre-defined structural template. As such, they can be viewed as a hierarchy of template and document specific content. This hierarchical template representation has several important advantages for document clustering and classification. First, templates capture common topics among the documents, while filtering out the potentially noisy variabilities such as personal information. Second, template representations scale far better than document representations since a single template captures numerous documents. Finally, since templates group together structurally similar documents, they can propagate properties between all the documents that match the template. In this paper, we use these advantages for document classification by formulating an efficient and effective hierarchical label propagation and discovery algorithm. The labels are propagated first over a template graph (constructed based on either term-based or topic-based similarities), and then to the matching documents. We evaluate the performance of the proposed algorithm using a large donated email corpus and show that the resulting template graph is significantly more compact than the corresponding document graph and the hierarchical label propagation is both efficient and effective in increasing the coverage of the baseline document classification algorithm. We demonstrate that the template label propagation achieves more than 91% precision and 93% recall, while increasing the label coverage by more than 11%.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

机器生成的文档,如电子邮件或动态网页是预定义结构模板的单个实例。因此,它们可以被视为模板和文档特定内容的层次结构。这种分层模板表示对于文档聚类和分类有几个重要的优点。首先,模板捕获文档中的公共主题,同时过滤掉潜在的干扰变量,如个人信息。其次,模板表示比文档表示伸缩性好得多,因为单个模板捕获大量文档。最后,由于模板将结构相似的文档组合在一起,因此它们可以在与模板匹配的所有文档之间传播属性。在本文中,我们通过制定一种高效的分层标签传播和发现算法来利用这些优势进行文档分类。标签首先在模板图(基于术语或基于主题的相似性构造)上传播,然后传播到匹配的文档。我们使用一个大型捐赠的电子邮件语料库来评估所提出算法的性能,并表明生成的模板图明显比相应的文档图更紧凑,并且分层标签传播在增加基线文档分类算法的覆盖率方面既高效又有效。我们证明了模板标签传播达到了91%以上的准确率和93%以上的召回率,同时将标签覆盖率提高了11%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Label Propagation and Discovery for Machine Generated Email
Machine-generated documents such as email or dynamic web pages are single instantiations of a pre-defined structural template. As such, they can be viewed as a hierarchy of template and document specific content. This hierarchical template representation has several important advantages for document clustering and classification. First, templates capture common topics among the documents, while filtering out the potentially noisy variabilities such as personal information. Second, template representations scale far better than document representations since a single template captures numerous documents. Finally, since templates group together structurally similar documents, they can propagate properties between all the documents that match the template. In this paper, we use these advantages for document classification by formulating an efficient and effective hierarchical label propagation and discovery algorithm. The labels are propagated first over a template graph (constructed based on either term-based or topic-based similarities), and then to the matching documents. We evaluate the performance of the proposed algorithm using a large donated email corpus and show that the resulting template graph is significantly more compact than the corresponding document graph and the hierarchical label propagation is both efficient and effective in increasing the coverage of the baseline document classification algorithm. We demonstrate that the template label propagation achieves more than 91% precision and 93% recall, while increasing the label coverage by more than 11%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信