数据流应用中引用局部性的刻画和利用

Feifei Li, Ching Chang, G. Kollios, Azer Bestavros
{"title":"数据流应用中引用局部性的刻画和利用","authors":"Feifei Li, Ching Chang, G. Kollios, Azer Bestavros","doi":"10.1109/ICDE.2006.33","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a new approach to process queries in data stream applications. We show that reference locality characteristics of data streams could be exploited in the design of superior and flexible data stream query processing techniques. We identify two different causes of reference locality: popularity over long time scales and temporal correlations over shorter time scales. An elegant mathematical model is shown to precisely quantify the degree of those sources of locality. Furthermore, we analyze the impact of locality-awareness on achievable performance gains over traditional algorithms on applications such asMAX-subset approximate sliding window join and approximate count estimation. In a comprehensive experimental study, we compare several existing algorithms against our locality-aware algorithms over a number of real datasets. The results validate the usefulness and efficiency of our approach.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"16 1","pages":"81-81"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Characterizing and Exploiting Reference Locality in Data Stream Applications\",\"authors\":\"Feifei Li, Ching Chang, G. Kollios, Azer Bestavros\",\"doi\":\"10.1109/ICDE.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a new approach to process queries in data stream applications. We show that reference locality characteristics of data streams could be exploited in the design of superior and flexible data stream query processing techniques. We identify two different causes of reference locality: popularity over long time scales and temporal correlations over shorter time scales. An elegant mathematical model is shown to precisely quantify the degree of those sources of locality. Furthermore, we analyze the impact of locality-awareness on achievable performance gains over traditional algorithms on applications such asMAX-subset approximate sliding window join and approximate count estimation. In a comprehensive experimental study, we compare several existing algorithms against our locality-aware algorithms over a number of real datasets. The results validate the usefulness and efficiency of our approach.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"16 1\",\"pages\":\"81-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在本文中,我们研究了一种在数据流应用中处理查询的新方法。我们展示了数据流的参考局部性特征可以被用于设计优越和灵活的数据流查询处理技术。我们确定了参考局部性的两个不同原因:长时间尺度上的受欢迎程度和短时间尺度上的时间相关性。一个优雅的数学模型显示了精确量化这些局部性来源的程度。此外,我们分析了位置感知对可实现性能增益的影响,而不是传统算法在诸如max -子集近似滑动窗口连接和近似计数估计等应用中的影响。在一项全面的实验研究中,我们在许多真实数据集上比较了几种现有算法与我们的位置感知算法。结果验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing and Exploiting Reference Locality in Data Stream Applications
In this paper, we investigate a new approach to process queries in data stream applications. We show that reference locality characteristics of data streams could be exploited in the design of superior and flexible data stream query processing techniques. We identify two different causes of reference locality: popularity over long time scales and temporal correlations over shorter time scales. An elegant mathematical model is shown to precisely quantify the degree of those sources of locality. Furthermore, we analyze the impact of locality-awareness on achievable performance gains over traditional algorithms on applications such asMAX-subset approximate sliding window join and approximate count estimation. In a comprehensive experimental study, we compare several existing algorithms against our locality-aware algorithms over a number of real datasets. The results validate the usefulness and efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信