N. Kurtovic, P. Pinilla, F. Long, M. Benisty, C. Manara, A. Natta, I. Pascucci, L. Ricci, A. Scholz, L. Testi
{"title":"金牛座恒星形成区非常低质量恒星周围圆盘的大小和结构","authors":"N. Kurtovic, P. Pinilla, F. Long, M. Benisty, C. Manara, A. Natta, I. Pascucci, L. Ricci, A. Scholz, L. Testi","doi":"10.1051/0004-6361/202038983","DOIUrl":null,"url":null,"abstract":"We aim to estimate if structures, such as cavities, rings, and gaps, are common in disks around VLMS and to test models of structure formation in these disks. We also aim to compare the radial extent of the gas and dust emission in disks around VLMS, which can give us insight about radial drift. We studied six disks around VLMS in the Taurus star-forming region using ALMA Band 7 ($\\sim 340\\,$GHz) at a resolution of $\\sim0.1''$. The targets were selected because of their high disk dust content in their stellar mass regime. Our observations resolve the disk dust continuum in all disks. In addition, we detect the $^{12}$CO ($J=3-2$) emission line in all targets and $^{13}$CO ($J=3-2$) in five of the six sources. The angular resolution allows the detection of dust substructures in three out of the six disks, which we studied by using UV-modeling. Central cavities are observed in the disks around stars MHO\\,6 (M5.0) and CIDA\\,1 (M4.5), while we have a tentative detection of a multi-ringed disk around J0433. Single planets of masses $0.1\\sim0.4\\,M_{\\rm{Jup}}$ would be required. The other three disks with no observed structures are the most compact and faintest in our sample. The emission of $^{12}$CO and $^{13}$CO is more extended than the dust continuum emission in all disks of our sample. When using the $^{12}$CO emission to determine the gas disk extension $R_{\\rm{gas}}$, the ratio of $R_{\\rm{gas}}/R_{\\rm{dust}}$ in our sample varies from 2.3 to 6.0, which is consistent with models of radial drift being very efficient around VLMS in the absence of substructures. Our observations do not exclude giant planet formation on the substructures observed. A comparison of the size and luminosity of VLMS disks with their counterparts around higher mass stars shows that they follow a similar relation.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Size and structures of disks around very low mass stars in the Taurus star-forming region\",\"authors\":\"N. Kurtovic, P. Pinilla, F. Long, M. Benisty, C. Manara, A. Natta, I. Pascucci, L. Ricci, A. Scholz, L. Testi\",\"doi\":\"10.1051/0004-6361/202038983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to estimate if structures, such as cavities, rings, and gaps, are common in disks around VLMS and to test models of structure formation in these disks. We also aim to compare the radial extent of the gas and dust emission in disks around VLMS, which can give us insight about radial drift. We studied six disks around VLMS in the Taurus star-forming region using ALMA Band 7 ($\\\\sim 340\\\\,$GHz) at a resolution of $\\\\sim0.1''$. The targets were selected because of their high disk dust content in their stellar mass regime. Our observations resolve the disk dust continuum in all disks. In addition, we detect the $^{12}$CO ($J=3-2$) emission line in all targets and $^{13}$CO ($J=3-2$) in five of the six sources. The angular resolution allows the detection of dust substructures in three out of the six disks, which we studied by using UV-modeling. Central cavities are observed in the disks around stars MHO\\\\,6 (M5.0) and CIDA\\\\,1 (M4.5), while we have a tentative detection of a multi-ringed disk around J0433. Single planets of masses $0.1\\\\sim0.4\\\\,M_{\\\\rm{Jup}}$ would be required. The other three disks with no observed structures are the most compact and faintest in our sample. The emission of $^{12}$CO and $^{13}$CO is more extended than the dust continuum emission in all disks of our sample. When using the $^{12}$CO emission to determine the gas disk extension $R_{\\\\rm{gas}}$, the ratio of $R_{\\\\rm{gas}}/R_{\\\\rm{dust}}$ in our sample varies from 2.3 to 6.0, which is consistent with models of radial drift being very efficient around VLMS in the absence of substructures. Our observations do not exclude giant planet formation on the substructures observed. A comparison of the size and luminosity of VLMS disks with their counterparts around higher mass stars shows that they follow a similar relation.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202038983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202038983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Size and structures of disks around very low mass stars in the Taurus star-forming region
We aim to estimate if structures, such as cavities, rings, and gaps, are common in disks around VLMS and to test models of structure formation in these disks. We also aim to compare the radial extent of the gas and dust emission in disks around VLMS, which can give us insight about radial drift. We studied six disks around VLMS in the Taurus star-forming region using ALMA Band 7 ($\sim 340\,$GHz) at a resolution of $\sim0.1''$. The targets were selected because of their high disk dust content in their stellar mass regime. Our observations resolve the disk dust continuum in all disks. In addition, we detect the $^{12}$CO ($J=3-2$) emission line in all targets and $^{13}$CO ($J=3-2$) in five of the six sources. The angular resolution allows the detection of dust substructures in three out of the six disks, which we studied by using UV-modeling. Central cavities are observed in the disks around stars MHO\,6 (M5.0) and CIDA\,1 (M4.5), while we have a tentative detection of a multi-ringed disk around J0433. Single planets of masses $0.1\sim0.4\,M_{\rm{Jup}}$ would be required. The other three disks with no observed structures are the most compact and faintest in our sample. The emission of $^{12}$CO and $^{13}$CO is more extended than the dust continuum emission in all disks of our sample. When using the $^{12}$CO emission to determine the gas disk extension $R_{\rm{gas}}$, the ratio of $R_{\rm{gas}}/R_{\rm{dust}}$ in our sample varies from 2.3 to 6.0, which is consistent with models of radial drift being very efficient around VLMS in the absence of substructures. Our observations do not exclude giant planet formation on the substructures observed. A comparison of the size and luminosity of VLMS disks with their counterparts around higher mass stars shows that they follow a similar relation.