Mohd Shareduwan Mohd Kasihmuddin, Nur Shahira Abdul Halim, Siti Zulaikha Mohd Jamaludin, M. Mansor, Alyaa Alway, Nur Ezlin Zamri, Siti Aishah Azhar, Muhammad Fadhil Marsani
{"title":"逻辑挖掘方法:基于进化算法的购物者购买数据提取","authors":"Mohd Shareduwan Mohd Kasihmuddin, Nur Shahira Abdul Halim, Siti Zulaikha Mohd Jamaludin, M. Mansor, Alyaa Alway, Nur Ezlin Zamri, Siti Aishah Azhar, Muhammad Fadhil Marsani","doi":"10.32890/jict2023.22.3.1","DOIUrl":null,"url":null,"abstract":"Online shopping is a multi-billion-dollar industry worldwide. However, several challenges related to purchase intention can impact the sales of e-commerce. For example, e-commerce platforms are unable to identify which factors contribute to the high sales of a product. Besides, online sellers have difficulty finding products that align with customers’ preferences. Therefore, this work will utilize an artificial neural network to provide knowledge extraction for the online shopping industry or e-commerce platforms that might improve their sales and services. There are limited attempts to propose knowledge extraction with neural network models in the online shopping field, especially research revolving around online shoppers’ purchasing intentions. In this study, 2-satisfiability logic was used to represent the shopping attribute and a special recurrent artificial neural network named Hopfield neural network was employed. In reducing the learning complexity, a genetic algorithm was implemented to optimize the logical rule throughout the learning phase in performing a 2-satisfiability-based reverse analysis method, implemented during the learning phase as this method was compared. The performance of the genetic algorithm with 2-satisfiability-based reverse analysis was measured according to the selected performance evaluation metrics. The simulation suggested that the proposed model outperformed the existing model in doing logic mining for the online shoppers dataset. ","PeriodicalId":39396,"journal":{"name":"International Journal of Information and Communication Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logic Mining Approach: Shoppers’ Purchasing Data Extraction via Evolutionary Algorithm\",\"authors\":\"Mohd Shareduwan Mohd Kasihmuddin, Nur Shahira Abdul Halim, Siti Zulaikha Mohd Jamaludin, M. Mansor, Alyaa Alway, Nur Ezlin Zamri, Siti Aishah Azhar, Muhammad Fadhil Marsani\",\"doi\":\"10.32890/jict2023.22.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online shopping is a multi-billion-dollar industry worldwide. However, several challenges related to purchase intention can impact the sales of e-commerce. For example, e-commerce platforms are unable to identify which factors contribute to the high sales of a product. Besides, online sellers have difficulty finding products that align with customers’ preferences. Therefore, this work will utilize an artificial neural network to provide knowledge extraction for the online shopping industry or e-commerce platforms that might improve their sales and services. There are limited attempts to propose knowledge extraction with neural network models in the online shopping field, especially research revolving around online shoppers’ purchasing intentions. In this study, 2-satisfiability logic was used to represent the shopping attribute and a special recurrent artificial neural network named Hopfield neural network was employed. In reducing the learning complexity, a genetic algorithm was implemented to optimize the logical rule throughout the learning phase in performing a 2-satisfiability-based reverse analysis method, implemented during the learning phase as this method was compared. The performance of the genetic algorithm with 2-satisfiability-based reverse analysis was measured according to the selected performance evaluation metrics. The simulation suggested that the proposed model outperformed the existing model in doing logic mining for the online shoppers dataset. \",\"PeriodicalId\":39396,\"journal\":{\"name\":\"International Journal of Information and Communication Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32890/jict2023.22.3.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32890/jict2023.22.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Logic Mining Approach: Shoppers’ Purchasing Data Extraction via Evolutionary Algorithm
Online shopping is a multi-billion-dollar industry worldwide. However, several challenges related to purchase intention can impact the sales of e-commerce. For example, e-commerce platforms are unable to identify which factors contribute to the high sales of a product. Besides, online sellers have difficulty finding products that align with customers’ preferences. Therefore, this work will utilize an artificial neural network to provide knowledge extraction for the online shopping industry or e-commerce platforms that might improve their sales and services. There are limited attempts to propose knowledge extraction with neural network models in the online shopping field, especially research revolving around online shoppers’ purchasing intentions. In this study, 2-satisfiability logic was used to represent the shopping attribute and a special recurrent artificial neural network named Hopfield neural network was employed. In reducing the learning complexity, a genetic algorithm was implemented to optimize the logical rule throughout the learning phase in performing a 2-satisfiability-based reverse analysis method, implemented during the learning phase as this method was compared. The performance of the genetic algorithm with 2-satisfiability-based reverse analysis was measured according to the selected performance evaluation metrics. The simulation suggested that the proposed model outperformed the existing model in doing logic mining for the online shoppers dataset.
期刊介绍:
IJICT is a refereed journal in the field of information and communication technology (ICT), providing an international forum for professionals, engineers and researchers. IJICT reports the new paradigms in this emerging field of technology and envisions the future developments in the frontier areas. The journal addresses issues for the vertical and horizontal applications in this area. Topics covered include: -Information theory/coding- Information/IT/network security, standards, applications- Internet/web based systems/products- Data mining/warehousing- Network planning, design, administration- Sensor/ad hoc networks- Human-computer intelligent interaction, AI- Computational linguistics, digital speech- Distributed/cooperative media- Interactive communication media/content- Social interaction, mobile communications- Signal representation/processing, image processing- Virtual reality, cyber law, e-governance- Microprocessor interfacing, hardware design- Control of industrial processes, ERP/CRM/SCM