轮廓码:用于人类识别的鲁棒和高效的多光谱掌纹编码

Zohaib Khan, A. Mian, Yiqun Hu
{"title":"轮廓码:用于人类识别的鲁棒和高效的多光谱掌纹编码","authors":"Zohaib Khan, A. Mian, Yiqun Hu","doi":"10.1109/ICCV.2011.6126463","DOIUrl":null,"url":null,"abstract":"We propose ‘Contour Code’, a novel representation and binary hash table encoding for multispectral palmprint recognition. We first present a reliable technique for the extraction of a region of interest (ROI) from palm images acquired with non-contact sensors. The Contour Code representation is then derived from the Nonsubsampled Contourlet Transform. A uniscale pyramidal filter is convolved with the ROI followed by the application of a directional filter bank. The dominant directional subband establishes the orientation at each pixel and the index corresponding to this subband is encoded in the Contour Code representation. Unlike existing representations which extract orientation features directly from the palm images, the Contour Code uses a two stage filtering to extract robust orientation features. The Contour Code is binarized into an efficient hash table structure that only requires indexing and summation operations for simultaneous one-to-many matching with an embedded score level fusion of multiple bands. We quantitatively evaluate the accuracy of the ROI extraction by comparison with a manually produced ground truth. Multispectral palmprint verification results on the PolyU and CASIA databases show that the Contour Code achieves an EER reduction upto 50%, compared to state-of-the-art methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"42 1","pages":"1935-1942"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Contour Code: Robust and efficient multispectral palmprint encoding for human recognition\",\"authors\":\"Zohaib Khan, A. Mian, Yiqun Hu\",\"doi\":\"10.1109/ICCV.2011.6126463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ‘Contour Code’, a novel representation and binary hash table encoding for multispectral palmprint recognition. We first present a reliable technique for the extraction of a region of interest (ROI) from palm images acquired with non-contact sensors. The Contour Code representation is then derived from the Nonsubsampled Contourlet Transform. A uniscale pyramidal filter is convolved with the ROI followed by the application of a directional filter bank. The dominant directional subband establishes the orientation at each pixel and the index corresponding to this subband is encoded in the Contour Code representation. Unlike existing representations which extract orientation features directly from the palm images, the Contour Code uses a two stage filtering to extract robust orientation features. The Contour Code is binarized into an efficient hash table structure that only requires indexing and summation operations for simultaneous one-to-many matching with an embedded score level fusion of multiple bands. We quantitatively evaluate the accuracy of the ROI extraction by comparison with a manually produced ground truth. Multispectral palmprint verification results on the PolyU and CASIA databases show that the Contour Code achieves an EER reduction upto 50%, compared to state-of-the-art methods.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"42 1\",\"pages\":\"1935-1942\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

我们提出了“轮廓码”,这是一种用于多光谱掌纹识别的新颖表示和二进制哈希表编码。我们首先提出了一种可靠的技术,用于从非接触式传感器获取的手掌图像中提取感兴趣区域(ROI)。然后从非下采样Contourlet变换中得到轮廓码表示。将一个非标锥体滤波器与ROI进行卷积,然后应用一个方向滤波器组。主导方向子带在每个像素处建立方向,对应于该子带的索引在轮廓码表示中编码。与直接从手掌图像中提取方向特征的现有表示不同,轮廓代码使用两阶段滤波来提取稳健的方向特征。轮廓码被二值化成一个高效的哈希表结构,只需要索引和求和操作,即可同时进行一对多匹配,并嵌入多个频带的分数级融合。我们定量地评估ROI提取的准确性,通过与人工产生的地面真值进行比较。在理大和CASIA数据库的多光谱掌纹验证结果显示,与最先进的方法相比,轮廓码的EER降低了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contour Code: Robust and efficient multispectral palmprint encoding for human recognition
We propose ‘Contour Code’, a novel representation and binary hash table encoding for multispectral palmprint recognition. We first present a reliable technique for the extraction of a region of interest (ROI) from palm images acquired with non-contact sensors. The Contour Code representation is then derived from the Nonsubsampled Contourlet Transform. A uniscale pyramidal filter is convolved with the ROI followed by the application of a directional filter bank. The dominant directional subband establishes the orientation at each pixel and the index corresponding to this subband is encoded in the Contour Code representation. Unlike existing representations which extract orientation features directly from the palm images, the Contour Code uses a two stage filtering to extract robust orientation features. The Contour Code is binarized into an efficient hash table structure that only requires indexing and summation operations for simultaneous one-to-many matching with an embedded score level fusion of multiple bands. We quantitatively evaluate the accuracy of the ROI extraction by comparison with a manually produced ground truth. Multispectral palmprint verification results on the PolyU and CASIA databases show that the Contour Code achieves an EER reduction upto 50%, compared to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信