{"title":"在银河系外围伪装成恒星形成的逃逸恒星","authors":"Eric P Andersson, F. Renaud, O. Agertz","doi":"10.1093/mnrasl/slaa201","DOIUrl":null,"url":null,"abstract":"In the outskirts of nearby spiral galaxies, star formation is observed in extremely low gas surface densities. Star formation in these regions, where the interstellar medium is dominated by diffuse atomic hydrogen, is difficult to explain with classic star formation theories. In this work, we introduce runaway stars as an explanation to this observation. Runaway stars, produced by collisional dynamics in young stellar clusters, can travel kilo-parsecs during their main sequence life time. Using galactic-scale hydrodynamic simulations including a treatment of individual stars, we demonstrate that this mechanism enables the ejection of young massive stars into environments where the gas is not dense enough to trigger star formation. This results in the appearance of star formation in regions where it ought to be impossible. We conclude that runaway stars are a contributing, if not dominant, factor to the observations of star formation in the outskirts of spiral galaxies.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Runaway stars masquerading as star formation in galactic outskirts\",\"authors\":\"Eric P Andersson, F. Renaud, O. Agertz\",\"doi\":\"10.1093/mnrasl/slaa201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the outskirts of nearby spiral galaxies, star formation is observed in extremely low gas surface densities. Star formation in these regions, where the interstellar medium is dominated by diffuse atomic hydrogen, is difficult to explain with classic star formation theories. In this work, we introduce runaway stars as an explanation to this observation. Runaway stars, produced by collisional dynamics in young stellar clusters, can travel kilo-parsecs during their main sequence life time. Using galactic-scale hydrodynamic simulations including a treatment of individual stars, we demonstrate that this mechanism enables the ejection of young massive stars into environments where the gas is not dense enough to trigger star formation. This results in the appearance of star formation in regions where it ought to be impossible. We conclude that runaway stars are a contributing, if not dominant, factor to the observations of star formation in the outskirts of spiral galaxies.\",\"PeriodicalId\":8452,\"journal\":{\"name\":\"arXiv: Astrophysics of Galaxies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slaa201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slaa201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Runaway stars masquerading as star formation in galactic outskirts
In the outskirts of nearby spiral galaxies, star formation is observed in extremely low gas surface densities. Star formation in these regions, where the interstellar medium is dominated by diffuse atomic hydrogen, is difficult to explain with classic star formation theories. In this work, we introduce runaway stars as an explanation to this observation. Runaway stars, produced by collisional dynamics in young stellar clusters, can travel kilo-parsecs during their main sequence life time. Using galactic-scale hydrodynamic simulations including a treatment of individual stars, we demonstrate that this mechanism enables the ejection of young massive stars into environments where the gas is not dense enough to trigger star formation. This results in the appearance of star formation in regions where it ought to be impossible. We conclude that runaway stars are a contributing, if not dominant, factor to the observations of star formation in the outskirts of spiral galaxies.