动态和局部微电化学方法评价新开发的贫双相不锈钢合金的耐蚀性

Arumugam Madhan Kumar, I. Toor
{"title":"动态和局部微电化学方法评价新开发的贫双相不锈钢合金的耐蚀性","authors":"Arumugam Madhan Kumar, I. Toor","doi":"10.1002/maco.202213174","DOIUrl":null,"url":null,"abstract":"A combination of scanning microelectrochemical techniques along with the conventional electrochemical approaches is explored to attain insight information on the localized corrosion on the newly developed lean duplex stainless steel (LDSS) alloys. The obtained results from dynamic electrochemical impedance spectroscopic (DEIS) tests explained the beneficial role of different alloying elements on the passive and transpassive regions of the investigated LDSS alloys in a 3.5% NaCl solution. The scanning vibrating electrode technique (SVET) was effective in examining the anodic and cathodic regions on the corroding LDSS, whereas the scanning electrochemical microscopy (SECM) technique was employed to explore the localized corrosion sites on LDSS in NaCl solution. The acquired SVET results revealed a reduction in the susceptibility of the newly developed alloys to localized corrosion concerning their composition, accounting for the enhanced corrosion resistance. The obtained result from conventional and scanning microelectrochemical techniques obviously revealed the LDSS alloy with the composition of Fe–16Cr–2Ni–2Mn–1Mo exhibited higher localized corrosion resistance in NaCl solution.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"14 1","pages":"1687 - 1700"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic and localized microelectrochemical approaches to evaluate the corrosion resistance of newly developed lean duplex stainless steel alloys\",\"authors\":\"Arumugam Madhan Kumar, I. Toor\",\"doi\":\"10.1002/maco.202213174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combination of scanning microelectrochemical techniques along with the conventional electrochemical approaches is explored to attain insight information on the localized corrosion on the newly developed lean duplex stainless steel (LDSS) alloys. The obtained results from dynamic electrochemical impedance spectroscopic (DEIS) tests explained the beneficial role of different alloying elements on the passive and transpassive regions of the investigated LDSS alloys in a 3.5% NaCl solution. The scanning vibrating electrode technique (SVET) was effective in examining the anodic and cathodic regions on the corroding LDSS, whereas the scanning electrochemical microscopy (SECM) technique was employed to explore the localized corrosion sites on LDSS in NaCl solution. The acquired SVET results revealed a reduction in the susceptibility of the newly developed alloys to localized corrosion concerning their composition, accounting for the enhanced corrosion resistance. The obtained result from conventional and scanning microelectrochemical techniques obviously revealed the LDSS alloy with the composition of Fe–16Cr–2Ni–2Mn–1Mo exhibited higher localized corrosion resistance in NaCl solution.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"14 1\",\"pages\":\"1687 - 1700\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202213174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202213174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文探讨了扫描微电化学技术与传统电化学方法的结合,以获得新开发的精益双相不锈钢(LDSS)合金局部腐蚀的深入信息。动态电化学阻抗谱(DEIS)测试结果解释了不同合金元素对所研究的LDSS合金在3.5% NaCl溶液中钝化和透化区的有利作用。扫描振动电极技术(SVET)可以有效地检测腐蚀LDSS的阳极和阴极区域,而扫描电化学显微镜(SECM)技术则可以检测腐蚀LDSS在NaCl溶液中的局部腐蚀部位。获得的SVET结果显示,新开发的合金在其成分方面对局部腐蚀的敏感性降低,这是耐腐蚀性增强的原因。结果表明,Fe-16Cr-2Ni-2Mn-1Mo组成的LDSS合金在NaCl溶液中具有较高的耐局部腐蚀性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic and localized microelectrochemical approaches to evaluate the corrosion resistance of newly developed lean duplex stainless steel alloys
A combination of scanning microelectrochemical techniques along with the conventional electrochemical approaches is explored to attain insight information on the localized corrosion on the newly developed lean duplex stainless steel (LDSS) alloys. The obtained results from dynamic electrochemical impedance spectroscopic (DEIS) tests explained the beneficial role of different alloying elements on the passive and transpassive regions of the investigated LDSS alloys in a 3.5% NaCl solution. The scanning vibrating electrode technique (SVET) was effective in examining the anodic and cathodic regions on the corroding LDSS, whereas the scanning electrochemical microscopy (SECM) technique was employed to explore the localized corrosion sites on LDSS in NaCl solution. The acquired SVET results revealed a reduction in the susceptibility of the newly developed alloys to localized corrosion concerning their composition, accounting for the enhanced corrosion resistance. The obtained result from conventional and scanning microelectrochemical techniques obviously revealed the LDSS alloy with the composition of Fe–16Cr–2Ni–2Mn–1Mo exhibited higher localized corrosion resistance in NaCl solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信