有限元外微积分中的扩展伽辽金分析

Q. Hong, Yuwen Li, Jinchao Xu
{"title":"有限元外微积分中的扩展伽辽金分析","authors":"Q. Hong, Yuwen Li, Jinchao Xu","doi":"10.1090/mcom/3707","DOIUrl":null,"url":null,"abstract":"For the Hodge–Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a unifying inf-sup analysis with respect to all discretization and penalty parameters. It is shown that the proposed methods can be hybridized as a reduced two-field formulation.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"38 1","pages":"1077-1106"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Extended Galerkin analysis in finite element exterior calculus\",\"authors\":\"Q. Hong, Yuwen Li, Jinchao Xu\",\"doi\":\"10.1090/mcom/3707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the Hodge–Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a unifying inf-sup analysis with respect to all discretization and penalty parameters. It is shown that the proposed methods can be hybridized as a reduced two-field formulation.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"38 1\",\"pages\":\"1077-1106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

对于有限元外微积分中的Hodge-Laplace方程,我们在扩展Galerkin框架中引入了几类不连续Galerkin方法。对于可收缩域,该框架利用了7个域,并提供了关于所有离散化和惩罚参数的统一的影响分析。结果表明,所提出的方法可以杂交为简化的双场公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extended Galerkin analysis in finite element exterior calculus
For the Hodge–Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a unifying inf-sup analysis with respect to all discretization and penalty parameters. It is shown that the proposed methods can be hybridized as a reduced two-field formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信