{"title":"有限元外微积分中的扩展伽辽金分析","authors":"Q. Hong, Yuwen Li, Jinchao Xu","doi":"10.1090/mcom/3707","DOIUrl":null,"url":null,"abstract":"For the Hodge–Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a unifying inf-sup analysis with respect to all discretization and penalty parameters. It is shown that the proposed methods can be hybridized as a reduced two-field formulation.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"38 1","pages":"1077-1106"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Extended Galerkin analysis in finite element exterior calculus\",\"authors\":\"Q. Hong, Yuwen Li, Jinchao Xu\",\"doi\":\"10.1090/mcom/3707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the Hodge–Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a unifying inf-sup analysis with respect to all discretization and penalty parameters. It is shown that the proposed methods can be hybridized as a reduced two-field formulation.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"38 1\",\"pages\":\"1077-1106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Extended Galerkin analysis in finite element exterior calculus
For the Hodge–Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a unifying inf-sup analysis with respect to all discretization and penalty parameters. It is shown that the proposed methods can be hybridized as a reduced two-field formulation.