通过重尾数据建模新算法更好地把握网络风险,构建网络弹性

M. Dacorogna, Nehla Debbabi, M. Kratz
{"title":"通过重尾数据建模新算法更好地把握网络风险,构建网络弹性","authors":"M. Dacorogna, Nehla Debbabi, M. Kratz","doi":"10.48550/arXiv.2209.02845","DOIUrl":null,"url":null,"abstract":"Cyber security and resilience are major challenges in our modern economies; this is why they are top priorities on the agenda of governments, security and defense forces, management of companies and organizations. Hence, the need of a deep understanding of cyber risks to improve resilience. We propose here an analysis of the database of the cyber complaints filed at the {\\it Gendarmerie Nationale}. We perform this analysis with a new algorithm developed for non-negative asymmetric heavy-tailed data, which could become a handy tool in applied fields. This method gives a good estimation of the full distribution including the tail. Our study confirms the finiteness of the loss expectation, necessary condition for insurability. Finally, we draw the consequences of this model for risk management, compare its results to other standard EVT models, and lay the ground for a classification of attacks based on the fatness of the tail.","PeriodicalId":11868,"journal":{"name":"Eur. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Building up Cyber Resilience by Better Grasping Cyber Risk Via a New Algorithm for Modelling Heavy-Tailed Data\",\"authors\":\"M. Dacorogna, Nehla Debbabi, M. Kratz\",\"doi\":\"10.48550/arXiv.2209.02845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber security and resilience are major challenges in our modern economies; this is why they are top priorities on the agenda of governments, security and defense forces, management of companies and organizations. Hence, the need of a deep understanding of cyber risks to improve resilience. We propose here an analysis of the database of the cyber complaints filed at the {\\\\it Gendarmerie Nationale}. We perform this analysis with a new algorithm developed for non-negative asymmetric heavy-tailed data, which could become a handy tool in applied fields. This method gives a good estimation of the full distribution including the tail. Our study confirms the finiteness of the loss expectation, necessary condition for insurability. Finally, we draw the consequences of this model for risk management, compare its results to other standard EVT models, and lay the ground for a classification of attacks based on the fatness of the tail.\",\"PeriodicalId\":11868,\"journal\":{\"name\":\"Eur. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eur. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.02845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.02845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

网络安全和弹性是现代经济面临的主要挑战;这就是为什么它们是政府、安全和国防部队、公司和组织管理的首要任务。因此,需要深入了解网络风险,以提高弹性。我们在此建议对{\it宪兵队国家}提交的网络投诉数据库进行分析。我们采用了一种新的非负非对称重尾数据分析算法,该算法可以成为应用领域的一个方便工具。该方法能很好地估计包括尾部在内的整个分布。我们的研究证实了损失预期的有限性,这是保险的必要条件。最后,我们得出了该模型对风险管理的影响,将其结果与其他标准EVT模型进行了比较,并为基于尾部丰满度的攻击分类奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building up Cyber Resilience by Better Grasping Cyber Risk Via a New Algorithm for Modelling Heavy-Tailed Data
Cyber security and resilience are major challenges in our modern economies; this is why they are top priorities on the agenda of governments, security and defense forces, management of companies and organizations. Hence, the need of a deep understanding of cyber risks to improve resilience. We propose here an analysis of the database of the cyber complaints filed at the {\it Gendarmerie Nationale}. We perform this analysis with a new algorithm developed for non-negative asymmetric heavy-tailed data, which could become a handy tool in applied fields. This method gives a good estimation of the full distribution including the tail. Our study confirms the finiteness of the loss expectation, necessary condition for insurability. Finally, we draw the consequences of this model for risk management, compare its results to other standard EVT models, and lay the ground for a classification of attacks based on the fatness of the tail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信