{"title":"移动传感器边界估计的最优自适应采样","authors":"P. Kearns, J. Lipor, B. Jedynak","doi":"10.1109/IEEECONF44664.2019.9048986","DOIUrl":null,"url":null,"abstract":"We consider the problem of active learning in the context of spatial sampling for boundary estimation, where the goal is to estimate an unknown boundary as accurately and quickly as possible. We present a finite-horizon search procedure to optimally minimize both the final estimation error and the distance traveled for a fixed number of samples, where a tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"19 1","pages":"1621-1625"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Adaptive Sampling for Boundary Estimation with Mobile Sensors\",\"authors\":\"P. Kearns, J. Lipor, B. Jedynak\",\"doi\":\"10.1109/IEEECONF44664.2019.9048986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of active learning in the context of spatial sampling for boundary estimation, where the goal is to estimate an unknown boundary as accurately and quickly as possible. We present a finite-horizon search procedure to optimally minimize both the final estimation error and the distance traveled for a fixed number of samples, where a tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"19 1\",\"pages\":\"1621-1625\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Adaptive Sampling for Boundary Estimation with Mobile Sensors
We consider the problem of active learning in the context of spatial sampling for boundary estimation, where the goal is to estimate an unknown boundary as accurately and quickly as possible. We present a finite-horizon search procedure to optimally minimize both the final estimation error and the distance traveled for a fixed number of samples, where a tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem.