移动传感器边界估计的最优自适应采样

P. Kearns, J. Lipor, B. Jedynak
{"title":"移动传感器边界估计的最优自适应采样","authors":"P. Kearns, J. Lipor, B. Jedynak","doi":"10.1109/IEEECONF44664.2019.9048986","DOIUrl":null,"url":null,"abstract":"We consider the problem of active learning in the context of spatial sampling for boundary estimation, where the goal is to estimate an unknown boundary as accurately and quickly as possible. We present a finite-horizon search procedure to optimally minimize both the final estimation error and the distance traveled for a fixed number of samples, where a tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"19 1","pages":"1621-1625"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Adaptive Sampling for Boundary Estimation with Mobile Sensors\",\"authors\":\"P. Kearns, J. Lipor, B. Jedynak\",\"doi\":\"10.1109/IEEECONF44664.2019.9048986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of active learning in the context of spatial sampling for boundary estimation, where the goal is to estimate an unknown boundary as accurately and quickly as possible. We present a finite-horizon search procedure to optimally minimize both the final estimation error and the distance traveled for a fixed number of samples, where a tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"19 1\",\"pages\":\"1621-1625\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们在边界估计的空间采样背景下考虑主动学习问题,其目标是尽可能准确和快速地估计未知边界。我们提出了一个有限视界搜索程序,以最优地最小化最终估计误差和固定数量样本的行进距离,其中使用调谐参数在估计精度和行进距离之间进行权衡。我们证明了所得到的优化问题可以以封闭形式解决,并且所得到的策略推广了解决该问题的现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Adaptive Sampling for Boundary Estimation with Mobile Sensors
We consider the problem of active learning in the context of spatial sampling for boundary estimation, where the goal is to estimate an unknown boundary as accurately and quickly as possible. We present a finite-horizon search procedure to optimally minimize both the final estimation error and the distance traveled for a fixed number of samples, where a tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信