Long Xiao, Bao Hua, Rao Changhui, Gao Guoqing, Zhou Luchun
{"title":"基于并行加速的改进快速相位展开算法","authors":"Long Xiao, Bao Hua, Rao Changhui, Gao Guoqing, Zhou Luchun","doi":"10.12086/OEE.2020.200111","DOIUrl":null,"url":null,"abstract":"Aiming at the shortcoming of low serial operational efficiency in the quality-map-guided phase-unwrapping algorithm proposed by Miguel, an improved algorithm for parallel merging of multiple low-reliability blocks is pro-posed. Under the condition that the original algorithm design idea is satisfied, the unwrapping path is redefined as the largest reliable edge of the block. In addition, based on the non-continuous characteristic of the unwrapping path of the original algorithm, a low-reliability block out-of-order merging strategy is proposed to make multiple merging tasks can be performed simultaneously. The improved algorithm uses a multi-threaded software architecture. The main thread is responsible for looping through the unprocessed blocks to check whether they meet the requirements of merging, and the child threads receive and perform the merge tasks. The experimental results show that the improved method is completely consistent with the processing results of the original algorithm, and the parallel improvement strategy can effectively use the computer's multi-core resources, so that the operational efficiency of the phase unwrapping algorithm is improved by more than 50%.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved fast phase unwrapping algorithm based on parallel acceleration\",\"authors\":\"Long Xiao, Bao Hua, Rao Changhui, Gao Guoqing, Zhou Luchun\",\"doi\":\"10.12086/OEE.2020.200111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the shortcoming of low serial operational efficiency in the quality-map-guided phase-unwrapping algorithm proposed by Miguel, an improved algorithm for parallel merging of multiple low-reliability blocks is pro-posed. Under the condition that the original algorithm design idea is satisfied, the unwrapping path is redefined as the largest reliable edge of the block. In addition, based on the non-continuous characteristic of the unwrapping path of the original algorithm, a low-reliability block out-of-order merging strategy is proposed to make multiple merging tasks can be performed simultaneously. The improved algorithm uses a multi-threaded software architecture. The main thread is responsible for looping through the unprocessed blocks to check whether they meet the requirements of merging, and the child threads receive and perform the merge tasks. The experimental results show that the improved method is completely consistent with the processing results of the original algorithm, and the parallel improvement strategy can effectively use the computer's multi-core resources, so that the operational efficiency of the phase unwrapping algorithm is improved by more than 50%.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.200111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.200111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Improved fast phase unwrapping algorithm based on parallel acceleration
Aiming at the shortcoming of low serial operational efficiency in the quality-map-guided phase-unwrapping algorithm proposed by Miguel, an improved algorithm for parallel merging of multiple low-reliability blocks is pro-posed. Under the condition that the original algorithm design idea is satisfied, the unwrapping path is redefined as the largest reliable edge of the block. In addition, based on the non-continuous characteristic of the unwrapping path of the original algorithm, a low-reliability block out-of-order merging strategy is proposed to make multiple merging tasks can be performed simultaneously. The improved algorithm uses a multi-threaded software architecture. The main thread is responsible for looping through the unprocessed blocks to check whether they meet the requirements of merging, and the child threads receive and perform the merge tasks. The experimental results show that the improved method is completely consistent with the processing results of the original algorithm, and the parallel improvement strategy can effectively use the computer's multi-core resources, so that the operational efficiency of the phase unwrapping algorithm is improved by more than 50%.