{"title":"结合算法信息动力学概念和机器学习进行脑电图分析:我们能得到什么?","authors":"Victor Iapascurta","doi":"10.25088/complexsystems.31.4.389","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) as an example of electrophysiological monitoring methods has a rather long history of successful application for the diagnosis and treatment of diseases, and this success would not have been possible without effective methods of mathematical, and more recently, computer analysis. Most of these methods are based on statistics. Among the methods of EEG analysis, there is a group of methods that use different versions of Shannon’s entropy estimation as a “main component” and that do not differ significantly from traditional statistical approaches. Despite the external similarity, another approach is to use the Kolmogorov–Chaitin definition of complexity and the concepts of algorithmic information dynamics. The algorithmic dynamics toolbox includes techniques (e.g., block decomposition method) that appear to be applicable to EEG analysis. The current paper is an attempt to use the block decomposition method along with the recent addition to the management of EEG data provided by machine learning, with the ultimate goal of making this data more useful to researchers and medical practitioners.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":"25 1","pages":"389-413"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Algorithmic Information Dynamics Concepts and Machine Learning for Electroencephalography Analysis: What Can We Get?\",\"authors\":\"Victor Iapascurta\",\"doi\":\"10.25088/complexsystems.31.4.389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) as an example of electrophysiological monitoring methods has a rather long history of successful application for the diagnosis and treatment of diseases, and this success would not have been possible without effective methods of mathematical, and more recently, computer analysis. Most of these methods are based on statistics. Among the methods of EEG analysis, there is a group of methods that use different versions of Shannon’s entropy estimation as a “main component” and that do not differ significantly from traditional statistical approaches. Despite the external similarity, another approach is to use the Kolmogorov–Chaitin definition of complexity and the concepts of algorithmic information dynamics. The algorithmic dynamics toolbox includes techniques (e.g., block decomposition method) that appear to be applicable to EEG analysis. The current paper is an attempt to use the block decomposition method along with the recent addition to the management of EEG data provided by machine learning, with the ultimate goal of making this data more useful to researchers and medical practitioners.\",\"PeriodicalId\":50871,\"journal\":{\"name\":\"Advances in Complex Systems\",\"volume\":\"25 1\",\"pages\":\"389-413\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.25088/complexsystems.31.4.389\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25088/complexsystems.31.4.389","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Combining Algorithmic Information Dynamics Concepts and Machine Learning for Electroencephalography Analysis: What Can We Get?
Electroencephalography (EEG) as an example of electrophysiological monitoring methods has a rather long history of successful application for the diagnosis and treatment of diseases, and this success would not have been possible without effective methods of mathematical, and more recently, computer analysis. Most of these methods are based on statistics. Among the methods of EEG analysis, there is a group of methods that use different versions of Shannon’s entropy estimation as a “main component” and that do not differ significantly from traditional statistical approaches. Despite the external similarity, another approach is to use the Kolmogorov–Chaitin definition of complexity and the concepts of algorithmic information dynamics. The algorithmic dynamics toolbox includes techniques (e.g., block decomposition method) that appear to be applicable to EEG analysis. The current paper is an attempt to use the block decomposition method along with the recent addition to the management of EEG data provided by machine learning, with the ultimate goal of making this data more useful to researchers and medical practitioners.
期刊介绍:
Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.