在退休收入中寻求税收alpha

J. DiLellio, Andreas Simon
{"title":"在退休收入中寻求税收alpha","authors":"J. DiLellio, Andreas Simon","doi":"10.61190/fsr.v30i4.3160","DOIUrl":null,"url":null,"abstract":"We provide a framework to find an optimal decision for tax-efficient retirement income. By developing a model for income and capital gains tax with stock and bond investments in tax- deferred, tax-exempt, and taxable accounts, we identify three categories of retirees based on their income needs and net worth. We propose and evaluate a simple heuristic to determine the optimal retirement income strategy, quantifying a 0.5% annual return benefit. We call this benefit tax alpha and show its robustness to varying model input parameters. We also suggest approaches for large institutions or FinTech firms to improve their existing financial planning tools.","PeriodicalId":100530,"journal":{"name":"Financial Services Review","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeking tax alpha in retirement income\",\"authors\":\"J. DiLellio, Andreas Simon\",\"doi\":\"10.61190/fsr.v30i4.3160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a framework to find an optimal decision for tax-efficient retirement income. By developing a model for income and capital gains tax with stock and bond investments in tax- deferred, tax-exempt, and taxable accounts, we identify three categories of retirees based on their income needs and net worth. We propose and evaluate a simple heuristic to determine the optimal retirement income strategy, quantifying a 0.5% annual return benefit. We call this benefit tax alpha and show its robustness to varying model input parameters. We also suggest approaches for large institutions or FinTech firms to improve their existing financial planning tools.\",\"PeriodicalId\":100530,\"journal\":{\"name\":\"Financial Services Review\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Services Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61190/fsr.v30i4.3160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Services Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61190/fsr.v30i4.3160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个框架,以找到一个最优的决策节税退休收入。通过在递延税、免税和应税账户中对股票和债券投资的收入和资本利得税开发一个模型,我们根据退休人员的收入需求和净资产确定了三类退休人员。我们提出并评估了一个简单的启发式方法来确定最优退休收入策略,量化了0.5%的年回报收益。我们称其为收益税alpha,并显示其对不同模型输入参数的鲁棒性。我们还建议大型机构或金融科技公司改进其现有的财务规划工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeking tax alpha in retirement income
We provide a framework to find an optimal decision for tax-efficient retirement income. By developing a model for income and capital gains tax with stock and bond investments in tax- deferred, tax-exempt, and taxable accounts, we identify three categories of retirees based on their income needs and net worth. We propose and evaluate a simple heuristic to determine the optimal retirement income strategy, quantifying a 0.5% annual return benefit. We call this benefit tax alpha and show its robustness to varying model input parameters. We also suggest approaches for large institutions or FinTech firms to improve their existing financial planning tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信