{"title":"乔治-凯尔曼图的极小性","authors":"G. Brinkmann, Jan Goedgebeur, B. McKay","doi":"10.1090/mcom/3701","DOIUrl":null,"url":null,"abstract":"In 1971, Tutte wrote in an article that\"it is tempting to conjecture that every 3-connected bipartite cubic graph is hamiltonian\". Motivated by this remark, Horton constructed a counterexample on 96 vertices. In a sequence of articles by different authors several smaller counterexamples were presented. The smallest of these graphs is a graph on 50 vertices which was discovered independently by Georges and Kelmans. In this article we show that there is no smaller counterexample. As all non-hamiltonian 3-connected bipartite cubic graphs in the literature have cyclic 4-cuts -- even if they have girth 6 -- it is natural to ask whether this is a necessary prerequisite. In this article we answer this question in the negative and give a construction of an infinite family of non-hamiltonian cyclically 5-connected bipartite cubic graphs. In 1969, Barnette gave a weaker version of the conjecture stating that 3-connected planar bipartite cubic graphs are hamiltonian. We show that Barnette's conjecture is true up to at least 90 vertices. We also report that a search of small non-hamiltonian 3-connected bipartite cubic graphs did not find any with genus less than 4.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"62 1","pages":"1483-1500"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Minimality of the Georges-Kelmans Graph\",\"authors\":\"G. Brinkmann, Jan Goedgebeur, B. McKay\",\"doi\":\"10.1090/mcom/3701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1971, Tutte wrote in an article that\\\"it is tempting to conjecture that every 3-connected bipartite cubic graph is hamiltonian\\\". Motivated by this remark, Horton constructed a counterexample on 96 vertices. In a sequence of articles by different authors several smaller counterexamples were presented. The smallest of these graphs is a graph on 50 vertices which was discovered independently by Georges and Kelmans. In this article we show that there is no smaller counterexample. As all non-hamiltonian 3-connected bipartite cubic graphs in the literature have cyclic 4-cuts -- even if they have girth 6 -- it is natural to ask whether this is a necessary prerequisite. In this article we answer this question in the negative and give a construction of an infinite family of non-hamiltonian cyclically 5-connected bipartite cubic graphs. In 1969, Barnette gave a weaker version of the conjecture stating that 3-connected planar bipartite cubic graphs are hamiltonian. We show that Barnette's conjecture is true up to at least 90 vertices. We also report that a search of small non-hamiltonian 3-connected bipartite cubic graphs did not find any with genus less than 4.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"62 1\",\"pages\":\"1483-1500\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In 1971, Tutte wrote in an article that"it is tempting to conjecture that every 3-connected bipartite cubic graph is hamiltonian". Motivated by this remark, Horton constructed a counterexample on 96 vertices. In a sequence of articles by different authors several smaller counterexamples were presented. The smallest of these graphs is a graph on 50 vertices which was discovered independently by Georges and Kelmans. In this article we show that there is no smaller counterexample. As all non-hamiltonian 3-connected bipartite cubic graphs in the literature have cyclic 4-cuts -- even if they have girth 6 -- it is natural to ask whether this is a necessary prerequisite. In this article we answer this question in the negative and give a construction of an infinite family of non-hamiltonian cyclically 5-connected bipartite cubic graphs. In 1969, Barnette gave a weaker version of the conjecture stating that 3-connected planar bipartite cubic graphs are hamiltonian. We show that Barnette's conjecture is true up to at least 90 vertices. We also report that a search of small non-hamiltonian 3-connected bipartite cubic graphs did not find any with genus less than 4.