{"title":"用离散元法分析矿石预还原回转窑中多粒径颗粒混合行为","authors":"Chenghong Liu, Xueyong Ding","doi":"10.1051/metal/2021038","DOIUrl":null,"url":null,"abstract":"The particle distribution in pre-reduction rotary kiln directly affects the reduction process of iron ore, and in-depth understanding of the mixing behavior is helpful to improve the product quality and productivity. The present work focused on the mixed dynamics of multi-component and multi-size systems in rotary kiln using discrete element method (DEM). We first confirmed that the final particle distribution and mixing degree are independent of the initial particle distribution, and then further discussed the influence of the key operating parameters such as rotating speed, average size ratio and filling degree on mixing behavior. The size segregation pattern of three components shows that the large particles segregated to the outer region, while the small particles were concentrated in the core region, forming an annular distribution with different particle sizes. Furthermore, the results also indicate that the rotational speed and fill degree show strong influence on the mixing time and have little influence on the mixing quality. Conversely, the average size ratio significantly affects on the mixing quality. The particle segregation is suppressed and the coal and iron ore particles are well mixed together for the whole bed when the average size of coal particles is smaller than that of iron ore particle. The findings of this work provide a reference for controlling and optimizing the particle mixing process in pre-reduction rotary kiln.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyses of multi-size particle mixing behavior in an ore pre-reduction rotary kiln by discrete element method\",\"authors\":\"Chenghong Liu, Xueyong Ding\",\"doi\":\"10.1051/metal/2021038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particle distribution in pre-reduction rotary kiln directly affects the reduction process of iron ore, and in-depth understanding of the mixing behavior is helpful to improve the product quality and productivity. The present work focused on the mixed dynamics of multi-component and multi-size systems in rotary kiln using discrete element method (DEM). We first confirmed that the final particle distribution and mixing degree are independent of the initial particle distribution, and then further discussed the influence of the key operating parameters such as rotating speed, average size ratio and filling degree on mixing behavior. The size segregation pattern of three components shows that the large particles segregated to the outer region, while the small particles were concentrated in the core region, forming an annular distribution with different particle sizes. Furthermore, the results also indicate that the rotational speed and fill degree show strong influence on the mixing time and have little influence on the mixing quality. Conversely, the average size ratio significantly affects on the mixing quality. The particle segregation is suppressed and the coal and iron ore particles are well mixed together for the whole bed when the average size of coal particles is smaller than that of iron ore particle. The findings of this work provide a reference for controlling and optimizing the particle mixing process in pre-reduction rotary kiln.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021038\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021038","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Analyses of multi-size particle mixing behavior in an ore pre-reduction rotary kiln by discrete element method
The particle distribution in pre-reduction rotary kiln directly affects the reduction process of iron ore, and in-depth understanding of the mixing behavior is helpful to improve the product quality and productivity. The present work focused on the mixed dynamics of multi-component and multi-size systems in rotary kiln using discrete element method (DEM). We first confirmed that the final particle distribution and mixing degree are independent of the initial particle distribution, and then further discussed the influence of the key operating parameters such as rotating speed, average size ratio and filling degree on mixing behavior. The size segregation pattern of three components shows that the large particles segregated to the outer region, while the small particles were concentrated in the core region, forming an annular distribution with different particle sizes. Furthermore, the results also indicate that the rotational speed and fill degree show strong influence on the mixing time and have little influence on the mixing quality. Conversely, the average size ratio significantly affects on the mixing quality. The particle segregation is suppressed and the coal and iron ore particles are well mixed together for the whole bed when the average size of coal particles is smaller than that of iron ore particle. The findings of this work provide a reference for controlling and optimizing the particle mixing process in pre-reduction rotary kiln.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.