用离散元法分析矿石预还原回转窑中多粒径颗粒混合行为

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
Chenghong Liu, Xueyong Ding
{"title":"用离散元法分析矿石预还原回转窑中多粒径颗粒混合行为","authors":"Chenghong Liu, Xueyong Ding","doi":"10.1051/metal/2021038","DOIUrl":null,"url":null,"abstract":"The particle distribution in pre-reduction rotary kiln directly affects the reduction process of iron ore, and in-depth understanding of the mixing behavior is helpful to improve the product quality and productivity. The present work focused on the mixed dynamics of multi-component and multi-size systems in rotary kiln using discrete element method (DEM). We first confirmed that the final particle distribution and mixing degree are independent of the initial particle distribution, and then further discussed the influence of the key operating parameters such as rotating speed, average size ratio and filling degree on mixing behavior. The size segregation pattern of three components shows that the large particles segregated to the outer region, while the small particles were concentrated in the core region, forming an annular distribution with different particle sizes. Furthermore, the results also indicate that the rotational speed and fill degree show strong influence on the mixing time and have little influence on the mixing quality. Conversely, the average size ratio significantly affects on the mixing quality. The particle segregation is suppressed and the coal and iron ore particles are well mixed together for the whole bed when the average size of coal particles is smaller than that of iron ore particle. The findings of this work provide a reference for controlling and optimizing the particle mixing process in pre-reduction rotary kiln.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyses of multi-size particle mixing behavior in an ore pre-reduction rotary kiln by discrete element method\",\"authors\":\"Chenghong Liu, Xueyong Ding\",\"doi\":\"10.1051/metal/2021038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particle distribution in pre-reduction rotary kiln directly affects the reduction process of iron ore, and in-depth understanding of the mixing behavior is helpful to improve the product quality and productivity. The present work focused on the mixed dynamics of multi-component and multi-size systems in rotary kiln using discrete element method (DEM). We first confirmed that the final particle distribution and mixing degree are independent of the initial particle distribution, and then further discussed the influence of the key operating parameters such as rotating speed, average size ratio and filling degree on mixing behavior. The size segregation pattern of three components shows that the large particles segregated to the outer region, while the small particles were concentrated in the core region, forming an annular distribution with different particle sizes. Furthermore, the results also indicate that the rotational speed and fill degree show strong influence on the mixing time and have little influence on the mixing quality. Conversely, the average size ratio significantly affects on the mixing quality. The particle segregation is suppressed and the coal and iron ore particles are well mixed together for the whole bed when the average size of coal particles is smaller than that of iron ore particle. The findings of this work provide a reference for controlling and optimizing the particle mixing process in pre-reduction rotary kiln.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021038\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021038","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

预还原回转窑中的颗粒分布直接影响铁矿石的还原过程,深入了解其混合行为有助于提高产品质量和生产率。本文采用离散元法研究了回转窑多部件、多尺寸系统的混合动力学问题。首先确定了最终颗粒分布和混合程度与初始颗粒分布无关,然后进一步讨论了转速、平均粒度比和填充度等关键操作参数对混合行为的影响。三组分的粒径偏析规律表明,大颗粒向外区偏析,小颗粒向核心区集中,形成不同粒径的环形分布。转速和填充度对搅拌时间影响较大,对搅拌质量影响较小。相反,平均粒度比对混合质量有显著影响。当煤颗粒的平均粒径小于铁矿颗粒的平均粒径时,颗粒偏析被抑制,煤与铁矿颗粒在整个床层内混合良好。研究结果可为预还原回转窑颗粒混合过程的控制和优化提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyses of multi-size particle mixing behavior in an ore pre-reduction rotary kiln by discrete element method
The particle distribution in pre-reduction rotary kiln directly affects the reduction process of iron ore, and in-depth understanding of the mixing behavior is helpful to improve the product quality and productivity. The present work focused on the mixed dynamics of multi-component and multi-size systems in rotary kiln using discrete element method (DEM). We first confirmed that the final particle distribution and mixing degree are independent of the initial particle distribution, and then further discussed the influence of the key operating parameters such as rotating speed, average size ratio and filling degree on mixing behavior. The size segregation pattern of three components shows that the large particles segregated to the outer region, while the small particles were concentrated in the core region, forming an annular distribution with different particle sizes. Furthermore, the results also indicate that the rotational speed and fill degree show strong influence on the mixing time and have little influence on the mixing quality. Conversely, the average size ratio significantly affects on the mixing quality. The particle segregation is suppressed and the coal and iron ore particles are well mixed together for the whole bed when the average size of coal particles is smaller than that of iron ore particle. The findings of this work provide a reference for controlling and optimizing the particle mixing process in pre-reduction rotary kiln.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信