概率单纯形上的拟凹形偏好与选择——非参数分析

Jan Heufer
{"title":"概率单纯形上的拟凹形偏好与选择——非参数分析","authors":"Jan Heufer","doi":"10.2139/ssrn.1593473","DOIUrl":null,"url":null,"abstract":"A nonparametric approach is presented to test whether decisions on a probability simplex could be induced by quasiconcave preferences. Necessary and sufficient conditions are presented. If the answer is affirmative, the methods developed here allow to reconstruct bounds on indifference curves. Furthermore we can construct quasiconcave utility functions in analogy to the utility function constructed in the proof of Afriat's Theorem. The approach is of interest for decisions under risk, stochastic choice, and ex-ante fairness considerations. The method is particularly suitable for data collected in a laboratory experiment.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quasiconcave Preferences and Choices on a Probability Simplex - A Nonparametric Analysis\",\"authors\":\"Jan Heufer\",\"doi\":\"10.2139/ssrn.1593473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonparametric approach is presented to test whether decisions on a probability simplex could be induced by quasiconcave preferences. Necessary and sufficient conditions are presented. If the answer is affirmative, the methods developed here allow to reconstruct bounds on indifference curves. Furthermore we can construct quasiconcave utility functions in analogy to the utility function constructed in the proof of Afriat's Theorem. The approach is of interest for decisions under risk, stochastic choice, and ex-ante fairness considerations. The method is particularly suitable for data collected in a laboratory experiment.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1593473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1593473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种非参数方法来检验在概率单纯形上的决策是否可以由拟凹形偏好诱导。给出了充分必要条件。如果答案是肯定的,这里开发的方法允许重建无差异曲线上的边界。在此基础上,我们可以构造拟凹形效用函数,类似于证明阿夫里亚特定理时构造的效用函数。该方法对风险、随机选择和事前公平性考虑下的决策很有意义。该方法特别适用于在实验室实验中收集的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasiconcave Preferences and Choices on a Probability Simplex - A Nonparametric Analysis
A nonparametric approach is presented to test whether decisions on a probability simplex could be induced by quasiconcave preferences. Necessary and sufficient conditions are presented. If the answer is affirmative, the methods developed here allow to reconstruct bounds on indifference curves. Furthermore we can construct quasiconcave utility functions in analogy to the utility function constructed in the proof of Afriat's Theorem. The approach is of interest for decisions under risk, stochastic choice, and ex-ante fairness considerations. The method is particularly suitable for data collected in a laboratory experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信