Ravichander Janapati, Vishwas Dalal, Usha Desai, Rakesh Sengupta, S. Kulkarni, D. Hemanth
{"title":"基于混合锚定粒子群优化的尺度共轭梯度多层感知器视觉诱发电位脑电分类","authors":"Ravichander Janapati, Vishwas Dalal, Usha Desai, Rakesh Sengupta, S. Kulkarni, D. Hemanth","doi":"10.1142/s021821302340016x","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface is an emerging field that focuses on transforming brain data into machine commands. EEG-based BCI is widely used due to the non-invasive nature of Electroencephalogram. Classification of EEG signals is one of the primary components in BCI applications. Steady-State Visually Evoked Potential (SSVEP) paradigms have gained importance because of lesser training time, higher precision, and improved information transfer rate compared to P300 and motor imagery paradigms. In this paper, a novel hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron classifier (APS-MLP) is proposed to improve the classification accuracy of SSVEP five classes viz. 6.66, 7.5, 8.57, 10 and 12 Hz, signals. Scaled Conjugate Gradient descent anchors the initial position of Particle Swarm Optimization. The best position, Pbest, of each particle initializes an SCG-MLP, the accuracy of APS-MLP is obtained by averaging the accuracies of each SCG-MLP. The proposed method is compared with standard classifiers namely, k-NN, SVM, LDA and MLP. In which, the proposed algorithm achieves improved training and testing accuracies of 88.69% and 95.4% respectively, which is 12–15% higher than the standard EEG-based BCI classifiers. The proposed algorithm is robust, with a Cohen’s kappa coefficient of 0.96, and will be used in applications such as motion control and improving the quality of life for people with disabilities.","PeriodicalId":50280,"journal":{"name":"International Journal on Artificial Intelligence Tools","volume":"46 4 1","pages":"2340016:1-2340016:20"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Visually Evoked Potential EEG Using Hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron Classifier\",\"authors\":\"Ravichander Janapati, Vishwas Dalal, Usha Desai, Rakesh Sengupta, S. Kulkarni, D. Hemanth\",\"doi\":\"10.1142/s021821302340016x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-Computer Interface is an emerging field that focuses on transforming brain data into machine commands. EEG-based BCI is widely used due to the non-invasive nature of Electroencephalogram. Classification of EEG signals is one of the primary components in BCI applications. Steady-State Visually Evoked Potential (SSVEP) paradigms have gained importance because of lesser training time, higher precision, and improved information transfer rate compared to P300 and motor imagery paradigms. In this paper, a novel hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron classifier (APS-MLP) is proposed to improve the classification accuracy of SSVEP five classes viz. 6.66, 7.5, 8.57, 10 and 12 Hz, signals. Scaled Conjugate Gradient descent anchors the initial position of Particle Swarm Optimization. The best position, Pbest, of each particle initializes an SCG-MLP, the accuracy of APS-MLP is obtained by averaging the accuracies of each SCG-MLP. The proposed method is compared with standard classifiers namely, k-NN, SVM, LDA and MLP. In which, the proposed algorithm achieves improved training and testing accuracies of 88.69% and 95.4% respectively, which is 12–15% higher than the standard EEG-based BCI classifiers. The proposed algorithm is robust, with a Cohen’s kappa coefficient of 0.96, and will be used in applications such as motion control and improving the quality of life for people with disabilities.\",\"PeriodicalId\":50280,\"journal\":{\"name\":\"International Journal on Artificial Intelligence Tools\",\"volume\":\"46 4 1\",\"pages\":\"2340016:1-2340016:20\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Artificial Intelligence Tools\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s021821302340016x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Artificial Intelligence Tools","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s021821302340016x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Classification of Visually Evoked Potential EEG Using Hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron Classifier
Brain-Computer Interface is an emerging field that focuses on transforming brain data into machine commands. EEG-based BCI is widely used due to the non-invasive nature of Electroencephalogram. Classification of EEG signals is one of the primary components in BCI applications. Steady-State Visually Evoked Potential (SSVEP) paradigms have gained importance because of lesser training time, higher precision, and improved information transfer rate compared to P300 and motor imagery paradigms. In this paper, a novel hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron classifier (APS-MLP) is proposed to improve the classification accuracy of SSVEP five classes viz. 6.66, 7.5, 8.57, 10 and 12 Hz, signals. Scaled Conjugate Gradient descent anchors the initial position of Particle Swarm Optimization. The best position, Pbest, of each particle initializes an SCG-MLP, the accuracy of APS-MLP is obtained by averaging the accuracies of each SCG-MLP. The proposed method is compared with standard classifiers namely, k-NN, SVM, LDA and MLP. In which, the proposed algorithm achieves improved training and testing accuracies of 88.69% and 95.4% respectively, which is 12–15% higher than the standard EEG-based BCI classifiers. The proposed algorithm is robust, with a Cohen’s kappa coefficient of 0.96, and will be used in applications such as motion control and improving the quality of life for people with disabilities.
期刊介绍:
The International Journal on Artificial Intelligence Tools (IJAIT) provides an interdisciplinary forum in which AI scientists and professionals can share their research results and report new advances on AI tools or tools that use AI. Tools refer to architectures, languages or algorithms, which constitute the means connecting theory with applications. So, IJAIT is a medium for promoting general and/or special purpose tools, which are very important for the evolution of science and manipulation of knowledge. IJAIT can also be used as a test ground for new AI tools.
Topics covered by IJAIT include but are not limited to: AI in Bioinformatics, AI for Service Engineering, AI for Software Engineering, AI for Ubiquitous Computing, AI for Web Intelligence Applications, AI Parallel Processing Tools (hardware/software), AI Programming Languages, AI Tools for CAD and VLSI Analysis/Design/Testing, AI Tools for Computer Vision and Speech Understanding, AI Tools for Multimedia, Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Image Understanding, Integrated/Hybrid AI Approaches, Intelligent System Architectures, Knowledge-Based/Expert Systems, Knowledge Management and Processing Tools, Knowledge Representation Languages, Natural Language Understanding, Neural Networks for AI, Object-Oriented Programming for AI, Reasoning and Evolution of Knowledge Bases, Self-Healing and Autonomous Systems, and Software Engineering for AI.