对流湍流的持续性分析

T. Banerjee, S. Chowdhuri
{"title":"对流湍流的持续性分析","authors":"T. Banerjee, S. Chowdhuri","doi":"10.5194/ems2021-194","DOIUrl":null,"url":null,"abstract":"Persistence is defined as the probability that the local value of a fluctuating field remains at a particular state for a certain amount of time, before being switched to another state. The concept of persistence has been found to have many diverse practical applications, ranging from nonequilibrium statistical mechanics to financial dynamics to distribution of time scales in turbulent flows and many more. In this study, we carry out a detailed analysis of the statistical characteristics of the persistence probability density functions (PDFs) of velocity and temperature fluctuations in the surface layer of a convective boundary layer, using a field-experimental dataset. Our results demonstrate that for the time scales smaller than the integral scales, the persistence PDFs of turbulent velocity and temperature fluctuations display a clear power-law behavior, associated with a self-similar eddy cascading mechanism. Apart from that, we show that the effects of non-Gaussian temperature fluctuations act only at those scales which are larger than the integral scales, where the persistence PDFs deviate from the power-law and drop exponentially.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persistence analysis in convective turbulence \",\"authors\":\"T. Banerjee, S. Chowdhuri\",\"doi\":\"10.5194/ems2021-194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistence is defined as the probability that the local value of a fluctuating field remains at a particular state for a certain amount of time, before being switched to another state. The concept of persistence has been found to have many diverse practical applications, ranging from nonequilibrium statistical mechanics to financial dynamics to distribution of time scales in turbulent flows and many more. In this study, we carry out a detailed analysis of the statistical characteristics of the persistence probability density functions (PDFs) of velocity and temperature fluctuations in the surface layer of a convective boundary layer, using a field-experimental dataset. Our results demonstrate that for the time scales smaller than the integral scales, the persistence PDFs of turbulent velocity and temperature fluctuations display a clear power-law behavior, associated with a self-similar eddy cascading mechanism. Apart from that, we show that the effects of non-Gaussian temperature fluctuations act only at those scales which are larger than the integral scales, where the persistence PDFs deviate from the power-law and drop exponentially.\",\"PeriodicalId\":9375,\"journal\":{\"name\":\"Bulletin of the American Physical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Physical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ems2021-194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Physical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ems2021-194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

持久性定义为波动场的局部值在切换到另一状态之前在特定状态保持一定时间的概率。人们发现持续性的概念有许多不同的实际应用,从非平衡统计力学到金融动力学,再到湍流中时间尺度的分布等等。本文利用野外实验数据,详细分析了对流边界层表层速度和温度波动的持续概率密度函数(pdf)的统计特征。我们的研究结果表明,在小于积分尺度的时间尺度上,湍流速度和温度波动的持久性pdf表现出明显的幂律行为,与自相似涡级联机制有关。除此之外,我们还表明,非高斯温度波动的影响仅在那些大于积分尺度的尺度上起作用,其中持久性pdf偏离幂律并呈指数下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistence analysis in convective turbulence 
Persistence is defined as the probability that the local value of a fluctuating field remains at a particular state for a certain amount of time, before being switched to another state. The concept of persistence has been found to have many diverse practical applications, ranging from nonequilibrium statistical mechanics to financial dynamics to distribution of time scales in turbulent flows and many more. In this study, we carry out a detailed analysis of the statistical characteristics of the persistence probability density functions (PDFs) of velocity and temperature fluctuations in the surface layer of a convective boundary layer, using a field-experimental dataset. Our results demonstrate that for the time scales smaller than the integral scales, the persistence PDFs of turbulent velocity and temperature fluctuations display a clear power-law behavior, associated with a self-similar eddy cascading mechanism. Apart from that, we show that the effects of non-Gaussian temperature fluctuations act only at those scales which are larger than the integral scales, where the persistence PDFs deviate from the power-law and drop exponentially.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信