混作和/或复作对稻田CH4和N2O排放的影响

IF 1.9 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES
S. Kimani, P. Bimantara, V. Kautsar, Ren Torita, S. Hattori, K. Tawaraya, S. Sudo, W. Cheng
{"title":"混作和/或复作对稻田CH4和N2O排放的影响","authors":"S. Kimani, P. Bimantara, V. Kautsar, Ren Torita, S. Hattori, K. Tawaraya, S. Sudo, W. Cheng","doi":"10.1080/00380768.2022.2047580","DOIUrl":null,"url":null,"abstract":"ABSTRACT Our previous pot experiments showed that using Azolla either or both as dual and green manure with rice increases its yield or significantly reduces either or both methane (CH4) and nitrous oxide (N2O) emissions. To confirm these findings in an actual field, Azolla was either grown as a dual crop (herein Cover) or incorporated as green manure plus dual cropping (herein AGM + Cover) at the beginning of the experiment along with rice. Compared with the control (chemical fertilizer; herein NPK), NPK + Cover and AGM + Cover treatments did not influence cumulative CH4 emissions throughout the rice growth period. However, AGM + Cover treatment affected significant CH4 emissions at early, middle, and later rice growth stages by 140.6%, 24.6%, and 33.1%, respectively, compared with NPK + Cover treatment. These emissions were attributed to the readily available carbon substrate for methanogens following the incorporation of Azolla as green manure. Compared with NPK, NPK + Cover and AGM + Cover significantly increased N2O emissions by 645.9% and 816.2%, respectively, during the middle rice growth stage. No significant N2O emission differences were observed in the three treatments in the early or later rice growth stages. The higher N2O emissions from the middle rice growth stage were ascribed to high substrate availability from the dead Azolla by higher summer air temperature in the 2019 season. AGM + Cover significantly decreased rice yield by 37.5% (NPK) and 35.3% (NPK + Cover), with no significant differences between NPK and NPK + Cover. This reduction was attributed to nitrogen immobilization from the incorporated Azolla during the early stage. Therefore, to ascertain the potential of Azolla in paddy fields to address environmental safety while sustaining yield, emphasis on the interaction of different application methods with various management practices is necessary.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"139 1","pages":"246 - 255"},"PeriodicalIF":1.9000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Azolla incorporation and/or dual cropping on CH4 and N2O emission from a paddy field\",\"authors\":\"S. Kimani, P. Bimantara, V. Kautsar, Ren Torita, S. Hattori, K. Tawaraya, S. Sudo, W. Cheng\",\"doi\":\"10.1080/00380768.2022.2047580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Our previous pot experiments showed that using Azolla either or both as dual and green manure with rice increases its yield or significantly reduces either or both methane (CH4) and nitrous oxide (N2O) emissions. To confirm these findings in an actual field, Azolla was either grown as a dual crop (herein Cover) or incorporated as green manure plus dual cropping (herein AGM + Cover) at the beginning of the experiment along with rice. Compared with the control (chemical fertilizer; herein NPK), NPK + Cover and AGM + Cover treatments did not influence cumulative CH4 emissions throughout the rice growth period. However, AGM + Cover treatment affected significant CH4 emissions at early, middle, and later rice growth stages by 140.6%, 24.6%, and 33.1%, respectively, compared with NPK + Cover treatment. These emissions were attributed to the readily available carbon substrate for methanogens following the incorporation of Azolla as green manure. Compared with NPK, NPK + Cover and AGM + Cover significantly increased N2O emissions by 645.9% and 816.2%, respectively, during the middle rice growth stage. No significant N2O emission differences were observed in the three treatments in the early or later rice growth stages. The higher N2O emissions from the middle rice growth stage were ascribed to high substrate availability from the dead Azolla by higher summer air temperature in the 2019 season. AGM + Cover significantly decreased rice yield by 37.5% (NPK) and 35.3% (NPK + Cover), with no significant differences between NPK and NPK + Cover. This reduction was attributed to nitrogen immobilization from the incorporated Azolla during the early stage. Therefore, to ascertain the potential of Azolla in paddy fields to address environmental safety while sustaining yield, emphasis on the interaction of different application methods with various management practices is necessary.\",\"PeriodicalId\":21852,\"journal\":{\"name\":\"Soil Science and Plant Nutrition\",\"volume\":\"139 1\",\"pages\":\"246 - 255\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/00380768.2022.2047580\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00380768.2022.2047580","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

我们之前的盆栽试验表明,将杜鹃花或两者作为水稻的双重和绿肥,可以提高其产量,或显著减少甲烷(CH4)和氧化亚氮(N2O)的排放。为了在实际的田地中证实这些发现,在试验开始时,杜鹃要么作为双重作物种植(此处为Cover),要么与水稻一起作为绿肥加双重作物种植(此处为AGM + Cover)。与对照(化肥)相比;NPK、NPK + Cover和AGM + Cover处理对水稻生育期累积CH4排放没有影响。与氮磷钾+覆盖处理相比,AGM +覆盖处理对水稻生育早期、中期和后期CH4排放的影响分别为140.6%、24.6%和33.1%。这些排放归因于在绿肥中掺入杜鹃花后甲烷菌可利用的碳基质。与NPK相比,NPK + Cover和AGM + Cover在水稻生育中期N2O排放量分别显著增加了645.9%和816.2%。在水稻生育前期和后期,3个处理的N2O排放均无显著差异。水稻生育中期N2O排放量增加的主要原因是2019年夏季较高的气温对死杜鹃花的基质有效度较高。AGM + Cover分别使水稻产量降低37.5% (NPK)和35.3% (NPK + Cover),与NPK + Cover间差异不显著。这种减少归因于在早期阶段从掺入的杜鹃花氮固定化。因此,为了确定绿萍在水田中的潜力,以解决环境安全问题,同时保持产量,强调不同施用方法与各种管理措施的相互作用是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Azolla incorporation and/or dual cropping on CH4 and N2O emission from a paddy field
ABSTRACT Our previous pot experiments showed that using Azolla either or both as dual and green manure with rice increases its yield or significantly reduces either or both methane (CH4) and nitrous oxide (N2O) emissions. To confirm these findings in an actual field, Azolla was either grown as a dual crop (herein Cover) or incorporated as green manure plus dual cropping (herein AGM + Cover) at the beginning of the experiment along with rice. Compared with the control (chemical fertilizer; herein NPK), NPK + Cover and AGM + Cover treatments did not influence cumulative CH4 emissions throughout the rice growth period. However, AGM + Cover treatment affected significant CH4 emissions at early, middle, and later rice growth stages by 140.6%, 24.6%, and 33.1%, respectively, compared with NPK + Cover treatment. These emissions were attributed to the readily available carbon substrate for methanogens following the incorporation of Azolla as green manure. Compared with NPK, NPK + Cover and AGM + Cover significantly increased N2O emissions by 645.9% and 816.2%, respectively, during the middle rice growth stage. No significant N2O emission differences were observed in the three treatments in the early or later rice growth stages. The higher N2O emissions from the middle rice growth stage were ascribed to high substrate availability from the dead Azolla by higher summer air temperature in the 2019 season. AGM + Cover significantly decreased rice yield by 37.5% (NPK) and 35.3% (NPK + Cover), with no significant differences between NPK and NPK + Cover. This reduction was attributed to nitrogen immobilization from the incorporated Azolla during the early stage. Therefore, to ascertain the potential of Azolla in paddy fields to address environmental safety while sustaining yield, emphasis on the interaction of different application methods with various management practices is necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Science and Plant Nutrition
Soil Science and Plant Nutrition 农林科学-农艺学
CiteScore
4.80
自引率
15.00%
发文量
56
审稿时长
18-36 weeks
期刊介绍: Soil Science and Plant Nutrition is the official English journal of the Japanese Society of Soil Science and Plant Nutrition (JSSSPN), and publishes original research and reviews in soil physics, chemistry and mineralogy; soil biology; plant nutrition; soil genesis, classification and survey; soil fertility; fertilizers and soil amendments; environment; socio cultural soil science. The Journal publishes full length papers, short papers, and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信