关于超积分Kleinian球填充、缺陷和算术群

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Kapovich, Alex Kontorovich
{"title":"关于超积分Kleinian球填充、缺陷和算术群","authors":"M. Kapovich, Alex Kontorovich","doi":"10.1515/crelle-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract We develop the notion of a Kleinian Sphere Packing, a generalization of “crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441]. Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such. We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from ℚ {{\\mathbb{Q}}} -arithmetic lattices of simplest type. The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles π m {\\frac{\\pi}{m}} for finitely many m. We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii) that integral packings only arise from non-uniform lattices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On superintegral Kleinian sphere packings, bugs, and arithmetic groups\",\"authors\":\"M. Kapovich, Alex Kontorovich\",\"doi\":\"10.1515/crelle-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop the notion of a Kleinian Sphere Packing, a generalization of “crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441]. Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such. We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from ℚ {{\\\\mathbb{Q}}} -arithmetic lattices of simplest type. The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles π m {\\\\frac{\\\\pi}{m}} for finitely many m. We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii) that integral packings only arise from non-uniform lattices.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

摘要:我们提出了Kleinian球填充的概念,这是在[a]中定义的“晶体”(类阿波罗)球填充的推广。孔托洛维奇和K. Nakamura,晶体球填充的几何和算法,国立国立大学学报(自然科学版)。学术科学中国生物医学工程学报,2019,24(2):436-441。与晶体充填不同,Kleinian充填存在于所有维度,“超积分”也是如此。我们将算术定理推广到Kleinian包,即超积分包来自于最简型的π -算术格{{\mathbb{Q}}}。这同样适用于更一般的物体,我们称之为Kleinian Bugs,其中球体不必是不相交的,但对于有限多个m,可以满足二面角π m {\frac{\pi}{m}}。我们解决了Kontorovich和Nakamura(2019)提出的两个问题:(i)算术定理在数域上一般是错误的,(ii)积分填充只产生于非均匀格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On superintegral Kleinian sphere packings, bugs, and arithmetic groups
Abstract We develop the notion of a Kleinian Sphere Packing, a generalization of “crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441]. Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such. We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from ℚ {{\mathbb{Q}}} -arithmetic lattices of simplest type. The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles π m {\frac{\pi}{m}} for finitely many m. We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii) that integral packings only arise from non-uniform lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信