一个半序Banach空间中两个耦合算子和的耦合混合不动点定理及其应用

B. Dhage
{"title":"一个半序Banach空间中两个耦合算子和的耦合混合不动点定理及其应用","authors":"B. Dhage","doi":"10.7153/DEA-2017-09-31","DOIUrl":null,"url":null,"abstract":"In this paper we prove a coupled hybrid fixed point theorem involving the sum of two coupled operators in a partially ordered Banach space and apply to a pair of nonlinear second order coupled linearly perturbed hybrid differential equations with the periodic boundary conditions for proving the existence and approximation of coupled solutions under certain mixed hybrid conditions. The abstract existence result of the coupled periodic boundary value problems is also illustrated by furnishing a numerical example.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"52 1","pages":"453-477"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A coupled hybrid fixed point theorem involving the sum of two coupled operators in a partially ordered Banach space with applications\",\"authors\":\"B. Dhage\",\"doi\":\"10.7153/DEA-2017-09-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove a coupled hybrid fixed point theorem involving the sum of two coupled operators in a partially ordered Banach space and apply to a pair of nonlinear second order coupled linearly perturbed hybrid differential equations with the periodic boundary conditions for proving the existence and approximation of coupled solutions under certain mixed hybrid conditions. The abstract existence result of the coupled periodic boundary value problems is also illustrated by furnishing a numerical example.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"52 1\",\"pages\":\"453-477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2017-09-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2017-09-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文证明了偏序Banach空间中涉及两个耦合算子和的一个耦合杂化不动点定理,并将其应用于具有周期边界条件的一对非线性二阶耦合线性摄动杂化微分方程,证明了在某些混合杂化条件下耦合解的存在性和逼近性。并通过数值算例说明了耦合周期边值问题的抽象存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A coupled hybrid fixed point theorem involving the sum of two coupled operators in a partially ordered Banach space with applications
In this paper we prove a coupled hybrid fixed point theorem involving the sum of two coupled operators in a partially ordered Banach space and apply to a pair of nonlinear second order coupled linearly perturbed hybrid differential equations with the periodic boundary conditions for proving the existence and approximation of coupled solutions under certain mixed hybrid conditions. The abstract existence result of the coupled periodic boundary value problems is also illustrated by furnishing a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信