非自适应适当学习多项式

N. Bshouty
{"title":"非自适应适当学习多项式","authors":"N. Bshouty","doi":"10.4230/LIPIcs.STACS.2023.16","DOIUrl":null,"url":null,"abstract":"We give the first polynomial-time non-adaptive proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. Our algorithm, for s -sparse polynomial over n variables, makes q = ( s/ϵ ) γ ( s,ϵ ) log n queries where 2 . 66 ≤ γ ( s, ϵ ) ≤ 6 . 922 and runs in ˜ O ( n ) · poly ( s, 1 /ϵ ) time. We also show that for any ϵ = 1 /s O (1) any non-adaptive learning algorithm must make at least ( s/ϵ ) Ω(1) log n queries. Therefore, the query complexity of our algorithm is also polynomial in the optimal query complexity and optimal in n .","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Adaptive Proper Learning Polynomials\",\"authors\":\"N. Bshouty\",\"doi\":\"10.4230/LIPIcs.STACS.2023.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give the first polynomial-time non-adaptive proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. Our algorithm, for s -sparse polynomial over n variables, makes q = ( s/ϵ ) γ ( s,ϵ ) log n queries where 2 . 66 ≤ γ ( s, ϵ ) ≤ 6 . 922 and runs in ˜ O ( n ) · poly ( s, 1 /ϵ ) time. We also show that for any ϵ = 1 /s O (1) any non-adaptive learning algorithm must make at least ( s/ϵ ) Ω(1) log n queries. Therefore, the query complexity of our algorithm is also polynomial in the optimal query complexity and optimal in n .\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.STACS.2023.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.STACS.2023.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给出了布尔稀疏多元多项式在均匀分布下的第一个多项式时间非自适应适当学习算法。我们的算法,对于n个变量上的s -稀疏多项式,使q = (s/ λ) γ (s, λ) log n个查询,其中2。66≤γ (s, λ)≤6。922,运行时间为~ O (n)·poly (s, 1 / ε)。我们还表明,对于任何一个λ = 1 /s O(1),任何非自适应学习算法必须至少进行(s/ λ) Ω(1) log n次查询。因此,我们算法的查询复杂度在最优查询复杂度中也是多项式,在n中也是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Adaptive Proper Learning Polynomials
We give the first polynomial-time non-adaptive proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. Our algorithm, for s -sparse polynomial over n variables, makes q = ( s/ϵ ) γ ( s,ϵ ) log n queries where 2 . 66 ≤ γ ( s, ϵ ) ≤ 6 . 922 and runs in ˜ O ( n ) · poly ( s, 1 /ϵ ) time. We also show that for any ϵ = 1 /s O (1) any non-adaptive learning algorithm must make at least ( s/ϵ ) Ω(1) log n queries. Therefore, the query complexity of our algorithm is also polynomial in the optimal query complexity and optimal in n .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信