除了通常的怀疑之外:上下文感知的重访支持

Ricardo Kawase, G. Papadakis, E. Herder, W. Nejdl
{"title":"除了通常的怀疑之外:上下文感知的重访支持","authors":"Ricardo Kawase, G. Papadakis, E. Herder, W. Nejdl","doi":"10.1145/1995966.1995974","DOIUrl":null,"url":null,"abstract":"A considerable amount of our activities on the Web involves revisits to pages or sites. Reasons for revisiting include active monitoring of content, verification of information, regular use of online services, and reoccurring tasks. Browsers support for revisitation is mainly focused on frequently and recently visited pages. In this paper we present a dynamic browser toolbar that provides recommendations beyond these usual suspects, balancing diversity and relevance. The recommendation method used is a combination of ranking and propagation methods. Experimental outcomes show that this algorithm performs significantly better than the baseline method. Further experiments address the question whether it is more appropriate to recommend specific pages or rather (portal pages of) Web sites. We conducted two user studies with a dynamic toolbar that relies on our recommendation algorithm. In this context, the outcomes confirm that users appreciate and use the contextual recommendations provided by the toolbar.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"1 1","pages":"27-36"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Beyond the usual suspects: context-aware revisitation support\",\"authors\":\"Ricardo Kawase, G. Papadakis, E. Herder, W. Nejdl\",\"doi\":\"10.1145/1995966.1995974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A considerable amount of our activities on the Web involves revisits to pages or sites. Reasons for revisiting include active monitoring of content, verification of information, regular use of online services, and reoccurring tasks. Browsers support for revisitation is mainly focused on frequently and recently visited pages. In this paper we present a dynamic browser toolbar that provides recommendations beyond these usual suspects, balancing diversity and relevance. The recommendation method used is a combination of ranking and propagation methods. Experimental outcomes show that this algorithm performs significantly better than the baseline method. Further experiments address the question whether it is more appropriate to recommend specific pages or rather (portal pages of) Web sites. We conducted two user studies with a dynamic toolbar that relies on our recommendation algorithm. In this context, the outcomes confirm that users appreciate and use the contextual recommendations provided by the toolbar.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"1 1\",\"pages\":\"27-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1995966.1995974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1995966.1995974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们在网络上的大量活动都涉及到对网页或网站的访问。重访的原因包括主动监控内容、验证信息、定期使用在线服务和重复出现的任务。浏览器对重访的支持主要集中在频繁访问和最近访问的页面上。在本文中,我们提出了一个动态浏览器工具栏,它提供了超出这些通常怀疑的建议,平衡了多样性和相关性。所使用的推荐方法是排名和传播方法的结合。实验结果表明,该算法的性能明显优于基线方法。进一步的实验解决了这样一个问题:是推荐特定页面更合适,还是推荐(网站的门户页面)更合适。我们使用动态工具栏进行了两次用户研究,该工具栏依赖于我们的推荐算法。在这种情况下,结果确认用户欣赏并使用工具栏提供的上下文推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond the usual suspects: context-aware revisitation support
A considerable amount of our activities on the Web involves revisits to pages or sites. Reasons for revisiting include active monitoring of content, verification of information, regular use of online services, and reoccurring tasks. Browsers support for revisitation is mainly focused on frequently and recently visited pages. In this paper we present a dynamic browser toolbar that provides recommendations beyond these usual suspects, balancing diversity and relevance. The recommendation method used is a combination of ranking and propagation methods. Experimental outcomes show that this algorithm performs significantly better than the baseline method. Further experiments address the question whether it is more appropriate to recommend specific pages or rather (portal pages of) Web sites. We conducted two user studies with a dynamic toolbar that relies on our recommendation algorithm. In this context, the outcomes confirm that users appreciate and use the contextual recommendations provided by the toolbar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信