{"title":"基于关注图的聚点分类递归神经网络","authors":"Qiongkai Xu, Qing Wang, Chenchen Xu, Lizhen Qu","doi":"10.1145/3132847.3133081","DOIUrl":null,"url":null,"abstract":"Vertex classification is a critical task in graph analysis, where both contents and linkage of vertices are incorporated during classification. Recently, researchers proposed using deep neural network to build an end-to-end framework, which can capture both local content and structure information. These approaches were proved effective in incorporating semantic meanings of neighbouring vertices, while the usefulness of this information was not properly considered. In this paper, we propose an Attentive Graph-based Recursive Neural Network (AGRNN), which exerts attention on neural network to make our model focus on vertices with more relevant semantic information. We evaluated our approach on three real-world datasets and also datasets with synthetic noise. Our experimental results show that AGRNN achieves the state-of-the-art performance, in terms of effectiveness and robustness. We have also illustrated some attention weight samples to demonstrate the rationality of our model.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Attentive Graph-based Recursive Neural Network for Collective Vertex Classification\",\"authors\":\"Qiongkai Xu, Qing Wang, Chenchen Xu, Lizhen Qu\",\"doi\":\"10.1145/3132847.3133081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertex classification is a critical task in graph analysis, where both contents and linkage of vertices are incorporated during classification. Recently, researchers proposed using deep neural network to build an end-to-end framework, which can capture both local content and structure information. These approaches were proved effective in incorporating semantic meanings of neighbouring vertices, while the usefulness of this information was not properly considered. In this paper, we propose an Attentive Graph-based Recursive Neural Network (AGRNN), which exerts attention on neural network to make our model focus on vertices with more relevant semantic information. We evaluated our approach on three real-world datasets and also datasets with synthetic noise. Our experimental results show that AGRNN achieves the state-of-the-art performance, in terms of effectiveness and robustness. We have also illustrated some attention weight samples to demonstrate the rationality of our model.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3133081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attentive Graph-based Recursive Neural Network for Collective Vertex Classification
Vertex classification is a critical task in graph analysis, where both contents and linkage of vertices are incorporated during classification. Recently, researchers proposed using deep neural network to build an end-to-end framework, which can capture both local content and structure information. These approaches were proved effective in incorporating semantic meanings of neighbouring vertices, while the usefulness of this information was not properly considered. In this paper, we propose an Attentive Graph-based Recursive Neural Network (AGRNN), which exerts attention on neural network to make our model focus on vertices with more relevant semantic information. We evaluated our approach on three real-world datasets and also datasets with synthetic noise. Our experimental results show that AGRNN achieves the state-of-the-art performance, in terms of effectiveness and robustness. We have also illustrated some attention weight samples to demonstrate the rationality of our model.