以硫氰酸铜(I)为空穴导体的固态染料敏化太阳能电池的7.379%功率转换效率

IF 2.8 4区 生物学
E. Danladi, M. Kashif, Thomas T. Daniel, Christopher U. Achem, Matthew Alpha, M. Gyan
{"title":"以硫氰酸铜(I)为空穴导体的固态染料敏化太阳能电池的7.379%功率转换效率","authors":"E. Danladi, M. Kashif, Thomas T. Daniel, Christopher U. Achem, Matthew Alpha, M. Gyan","doi":"10.26565/2312-4334-2022-3-03","DOIUrl":null,"url":null,"abstract":"Sourcing for an alternative to the liquid electrolyte in dye-sensitized solar cells (DSSCs) have been the subject of interest in the photovoltaic horizon. Herein, we reported by means of simulation, the performance of dye-sensitized solar cell by replacing the liquid electrolyte with a copper (I) thiocyanate (CuSCN) hole conductor. The study was carried out using Solar Capacitance Simulation Software (SCAPS) which is based on poisson and continuity equations. The simulation was done based on an n-i-p proposed architecture of FTO/TiO2/N719/CuSCN/Pt. The result of the initial device gave a Power Conversion Efficiency (PCE), Fill Factor (FF), Short Circuit Current Density (Jsc) and Open Circuit Voltage (Voc) of 5.71 %, 78.32 %, 6.23 mAcm-2, and 1.17 V. After optimizing input parameters to obtain 1×109 cm-2 for CuSCN/N719 interface defect density, 280 K for temperature, 1.0 μm for N719 dye thickness, 0.4 μm for TiO2 thickness, Pt for metal back contact, and 0.2 μm for CuSCN thickness, the overall device performance of 7.379 % for PCE, 77.983 % for FF, 7.185 mAcm-2 for Jsc and 1.317 V for Voc were obtained. When compared with the initial device, the optimized results showed an enhanced performance of ~ 1.29 times, 1.15 times, and 1.13 times in PCE, Jsc, and Voc over the initial device. The results obtained are encouraging and the findings will serve as a baseline to researchers involved in the fabrication of novel high-performance solid-state DSSCs to realize its appealing nature for industry scalability.","PeriodicalId":48765,"journal":{"name":"3 Biotech","volume":"60 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"7.379 % Power Conversion Efficiency of a Numerically Simulated Solid-State Dye-Sensitized Solar Cell with Copper (I) Thiocyanate as a Hole Conductor\",\"authors\":\"E. Danladi, M. Kashif, Thomas T. Daniel, Christopher U. Achem, Matthew Alpha, M. Gyan\",\"doi\":\"10.26565/2312-4334-2022-3-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sourcing for an alternative to the liquid electrolyte in dye-sensitized solar cells (DSSCs) have been the subject of interest in the photovoltaic horizon. Herein, we reported by means of simulation, the performance of dye-sensitized solar cell by replacing the liquid electrolyte with a copper (I) thiocyanate (CuSCN) hole conductor. The study was carried out using Solar Capacitance Simulation Software (SCAPS) which is based on poisson and continuity equations. The simulation was done based on an n-i-p proposed architecture of FTO/TiO2/N719/CuSCN/Pt. The result of the initial device gave a Power Conversion Efficiency (PCE), Fill Factor (FF), Short Circuit Current Density (Jsc) and Open Circuit Voltage (Voc) of 5.71 %, 78.32 %, 6.23 mAcm-2, and 1.17 V. After optimizing input parameters to obtain 1×109 cm-2 for CuSCN/N719 interface defect density, 280 K for temperature, 1.0 μm for N719 dye thickness, 0.4 μm for TiO2 thickness, Pt for metal back contact, and 0.2 μm for CuSCN thickness, the overall device performance of 7.379 % for PCE, 77.983 % for FF, 7.185 mAcm-2 for Jsc and 1.317 V for Voc were obtained. When compared with the initial device, the optimized results showed an enhanced performance of ~ 1.29 times, 1.15 times, and 1.13 times in PCE, Jsc, and Voc over the initial device. The results obtained are encouraging and the findings will serve as a baseline to researchers involved in the fabrication of novel high-performance solid-state DSSCs to realize its appealing nature for industry scalability.\",\"PeriodicalId\":48765,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2022-3-03\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26565/2312-4334-2022-3-03","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

寻找染料敏化太阳能电池(DSSCs)中液体电解质的替代品一直是光伏领域感兴趣的主题。本文采用模拟的方法,研究了用硫氰酸铜(CuSCN)空穴导体代替液体电解质制备染料敏化太阳能电池的性能。利用基于泊松方程和连续方程的太阳电容仿真软件(SCAPS)进行了研究。基于n-i-p提出的FTO/TiO2/N719/CuSCN/Pt结构进行了仿真。初始器件的功率转换效率(PCE)、填充系数(FF)、短路电流密度(Jsc)和开路电压(Voc)分别为5.71%、78.32%、6.23 mAcm-2和1.17 V。通过对输入参数进行优化,得到CuSCN/N719界面缺陷密度1×109 cm-2、温度280 K、N719染料厚度1.0 μm、TiO2厚度0.4 μm、金属背接触Pt、CuSCN厚度0.2 μm,器件整体性能为PCE 7.379%、FF 77.98.3%、Jsc 7.185 mAcm-2、Voc 1.317 V。与初始器件相比,优化后的PCE、Jsc和Voc的性能分别提高了约1.29倍、1.15倍和1.13倍。获得的结果令人鼓舞,这些发现将作为研究人员参与制造新型高性能固态DSSCs的基线,以实现其具有工业可扩展性的吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
7.379 % Power Conversion Efficiency of a Numerically Simulated Solid-State Dye-Sensitized Solar Cell with Copper (I) Thiocyanate as a Hole Conductor
Sourcing for an alternative to the liquid electrolyte in dye-sensitized solar cells (DSSCs) have been the subject of interest in the photovoltaic horizon. Herein, we reported by means of simulation, the performance of dye-sensitized solar cell by replacing the liquid electrolyte with a copper (I) thiocyanate (CuSCN) hole conductor. The study was carried out using Solar Capacitance Simulation Software (SCAPS) which is based on poisson and continuity equations. The simulation was done based on an n-i-p proposed architecture of FTO/TiO2/N719/CuSCN/Pt. The result of the initial device gave a Power Conversion Efficiency (PCE), Fill Factor (FF), Short Circuit Current Density (Jsc) and Open Circuit Voltage (Voc) of 5.71 %, 78.32 %, 6.23 mAcm-2, and 1.17 V. After optimizing input parameters to obtain 1×109 cm-2 for CuSCN/N719 interface defect density, 280 K for temperature, 1.0 μm for N719 dye thickness, 0.4 μm for TiO2 thickness, Pt for metal back contact, and 0.2 μm for CuSCN thickness, the overall device performance of 7.379 % for PCE, 77.983 % for FF, 7.185 mAcm-2 for Jsc and 1.317 V for Voc were obtained. When compared with the initial device, the optimized results showed an enhanced performance of ~ 1.29 times, 1.15 times, and 1.13 times in PCE, Jsc, and Voc over the initial device. The results obtained are encouraging and the findings will serve as a baseline to researchers involved in the fabrication of novel high-performance solid-state DSSCs to realize its appealing nature for industry scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信