Li He, Jiashu Zhao, Yulong Gu, Mitchell Elbaz, Zhuoye Ding
{"title":"推荐系统的偏差研究与无偏深度神经网络","authors":"Li He, Jiashu Zhao, Yulong Gu, Mitchell Elbaz, Zhuoye Ding","doi":"10.3233/web-230036","DOIUrl":null,"url":null,"abstract":"User feedback data (e.g., clicks, dwell time in the product detail page) have been incorporated in the training process of many ranking models for better performance. Such approaches are widely used in many ranking applications, including search and recommendation. Recently, the inherent biases in user feedback data have been studied, which indicates how the users’ behaviors can be affected by factors other than relevancy. By identifying and removing these biases, the ranking models can be further improved. Researchers have developed a variety of debiasing methods on different bias factors. Most of them only focus on one type of bias and pay little attention to different types of bias from a unified perspective. In this paper, we conduct a comprehensive study of bias focusing on the application of ranking problems in recommender systems which is highly important for the research of web intelligence. Then, we share our experiences derived from designing and optimizing unbiased models to improve feeds recommendation. To uncover the effects of biases and achieve better ranking performance, we propose several unbiased models and compare with state-of-the-art models. We conduct extensive offline experiments on real datasets and validate the effectiveness of our method by performing online A/B testing in a real-world recommender system.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bias study and an unbiased deep neural network for recommender systems\",\"authors\":\"Li He, Jiashu Zhao, Yulong Gu, Mitchell Elbaz, Zhuoye Ding\",\"doi\":\"10.3233/web-230036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User feedback data (e.g., clicks, dwell time in the product detail page) have been incorporated in the training process of many ranking models for better performance. Such approaches are widely used in many ranking applications, including search and recommendation. Recently, the inherent biases in user feedback data have been studied, which indicates how the users’ behaviors can be affected by factors other than relevancy. By identifying and removing these biases, the ranking models can be further improved. Researchers have developed a variety of debiasing methods on different bias factors. Most of them only focus on one type of bias and pay little attention to different types of bias from a unified perspective. In this paper, we conduct a comprehensive study of bias focusing on the application of ranking problems in recommender systems which is highly important for the research of web intelligence. Then, we share our experiences derived from designing and optimizing unbiased models to improve feeds recommendation. To uncover the effects of biases and achieve better ranking performance, we propose several unbiased models and compare with state-of-the-art models. We conduct extensive offline experiments on real datasets and validate the effectiveness of our method by performing online A/B testing in a real-world recommender system.\",\"PeriodicalId\":42775,\"journal\":{\"name\":\"Web Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-230036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-230036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A bias study and an unbiased deep neural network for recommender systems
User feedback data (e.g., clicks, dwell time in the product detail page) have been incorporated in the training process of many ranking models for better performance. Such approaches are widely used in many ranking applications, including search and recommendation. Recently, the inherent biases in user feedback data have been studied, which indicates how the users’ behaviors can be affected by factors other than relevancy. By identifying and removing these biases, the ranking models can be further improved. Researchers have developed a variety of debiasing methods on different bias factors. Most of them only focus on one type of bias and pay little attention to different types of bias from a unified perspective. In this paper, we conduct a comprehensive study of bias focusing on the application of ranking problems in recommender systems which is highly important for the research of web intelligence. Then, we share our experiences derived from designing and optimizing unbiased models to improve feeds recommendation. To uncover the effects of biases and achieve better ranking performance, we propose several unbiased models and compare with state-of-the-art models. We conduct extensive offline experiments on real datasets and validate the effectiveness of our method by performing online A/B testing in a real-world recommender system.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]