{"title":"如何扩展Elo:贝叶斯视角","authors":"Martin Ingram","doi":"10.1515/JQAS-2020-0066","DOIUrl":null,"url":null,"abstract":"Abstract The Elo rating system, originally designed for rating chess players, has since become a popular way to estimate competitors’ time-varying skills in many sports. Though the self-correcting Elo algorithm is simple and intuitive, it lacks a probabilistic justification which can make it hard to extend. In this paper, we present a simple connection between approximate Bayesian posterior mode estimation and Elo. We provide a novel justification of the approximations made by linking Elo to steady-state Kalman filtering. Our second key contribution is to observe that the derivation suggests a straightforward procedure for extending Elo. We use the procedure to derive versions of Elo incorporating margins of victory, correlated skills across different playing surfaces, and differing skills by tournament level in tennis. Combining all these extensions results in the most complete version of Elo presented for the sport yet. We evaluate the derived models on two seasons of men’s professional tennis matches (2018 and 2019). The best-performing model was able to predict matches with higher accuracy than both Elo and Glicko (65.8% compared to 63.7 and 63.5%, respectively) and a higher mean log-likelihood (−0.615 compared to −0.632 and −0.633, respectively), demonstrating the proposed model’s ability to improve predictions.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"79 1","pages":"203 - 219"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"How to extend Elo: a Bayesian perspective\",\"authors\":\"Martin Ingram\",\"doi\":\"10.1515/JQAS-2020-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Elo rating system, originally designed for rating chess players, has since become a popular way to estimate competitors’ time-varying skills in many sports. Though the self-correcting Elo algorithm is simple and intuitive, it lacks a probabilistic justification which can make it hard to extend. In this paper, we present a simple connection between approximate Bayesian posterior mode estimation and Elo. We provide a novel justification of the approximations made by linking Elo to steady-state Kalman filtering. Our second key contribution is to observe that the derivation suggests a straightforward procedure for extending Elo. We use the procedure to derive versions of Elo incorporating margins of victory, correlated skills across different playing surfaces, and differing skills by tournament level in tennis. Combining all these extensions results in the most complete version of Elo presented for the sport yet. We evaluate the derived models on two seasons of men’s professional tennis matches (2018 and 2019). The best-performing model was able to predict matches with higher accuracy than both Elo and Glicko (65.8% compared to 63.7 and 63.5%, respectively) and a higher mean log-likelihood (−0.615 compared to −0.632 and −0.633, respectively), demonstrating the proposed model’s ability to improve predictions.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"79 1\",\"pages\":\"203 - 219\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/JQAS-2020-0066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JQAS-2020-0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Abstract The Elo rating system, originally designed for rating chess players, has since become a popular way to estimate competitors’ time-varying skills in many sports. Though the self-correcting Elo algorithm is simple and intuitive, it lacks a probabilistic justification which can make it hard to extend. In this paper, we present a simple connection between approximate Bayesian posterior mode estimation and Elo. We provide a novel justification of the approximations made by linking Elo to steady-state Kalman filtering. Our second key contribution is to observe that the derivation suggests a straightforward procedure for extending Elo. We use the procedure to derive versions of Elo incorporating margins of victory, correlated skills across different playing surfaces, and differing skills by tournament level in tennis. Combining all these extensions results in the most complete version of Elo presented for the sport yet. We evaluate the derived models on two seasons of men’s professional tennis matches (2018 and 2019). The best-performing model was able to predict matches with higher accuracy than both Elo and Glicko (65.8% compared to 63.7 and 63.5%, respectively) and a higher mean log-likelihood (−0.615 compared to −0.632 and −0.633, respectively), demonstrating the proposed model’s ability to improve predictions.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.