带再热的小型模块化反应堆和燃气轮机组合循环

Robert J. Stakenborghs, G. Kramer
{"title":"带再热的小型模块化反应堆和燃气轮机组合循环","authors":"Robert J. Stakenborghs, G. Kramer","doi":"10.1115/ICONE26-81002","DOIUrl":null,"url":null,"abstract":"A novel combined small modular reactor (SMR) and gas turbine cycle is presented. This SMR-GT cycle is modeled using fundamental thermodynamic relationships and compared to existing state-of-the-art power generation cycles. The SMR-GT cycle includes an 82 MWe SMR cycle that is combined with a 54 MWe gas turbine cycle. A heat exchanger is used to extract energy from the gas turbine exhaust to create superheated main steam and provide reheat downstream of the LP turbine. This results in a 32 MWe increase in the SMR cycle for total unit output of 136 MWe.\n Comparisons of thermal efficiency, heat rate, CO2 emissions, and net generation are made between a stand-alone SMR, a typical combined cycle gas turbine (CCGT), standalone gas turbine and the combined SMR-GT cycles. Several advantages of the SMR-GT cycle are discussed.\n In addition, the rapid deployment of a gas turbine allows for a power station to deliver power and earn revenue prior to completion of the more complex SMR portion of the plant. The SMR portion of the cycle also reduces the overall fuel cost volatility associated with gas turbine based power station.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combined Small Modular Reactor and Gas Turbine Cycle With Reheat\",\"authors\":\"Robert J. Stakenborghs, G. Kramer\",\"doi\":\"10.1115/ICONE26-81002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel combined small modular reactor (SMR) and gas turbine cycle is presented. This SMR-GT cycle is modeled using fundamental thermodynamic relationships and compared to existing state-of-the-art power generation cycles. The SMR-GT cycle includes an 82 MWe SMR cycle that is combined with a 54 MWe gas turbine cycle. A heat exchanger is used to extract energy from the gas turbine exhaust to create superheated main steam and provide reheat downstream of the LP turbine. This results in a 32 MWe increase in the SMR cycle for total unit output of 136 MWe.\\n Comparisons of thermal efficiency, heat rate, CO2 emissions, and net generation are made between a stand-alone SMR, a typical combined cycle gas turbine (CCGT), standalone gas turbine and the combined SMR-GT cycles. Several advantages of the SMR-GT cycle are discussed.\\n In addition, the rapid deployment of a gas turbine allows for a power station to deliver power and earn revenue prior to completion of the more complex SMR portion of the plant. The SMR portion of the cycle also reduces the overall fuel cost volatility associated with gas turbine based power station.\",\"PeriodicalId\":65607,\"journal\":{\"name\":\"International Journal of Plant Engineering and Management\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Engineering and Management\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Engineering and Management","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1115/ICONE26-81002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新型的组合式小型模块化反应堆与燃气轮机循环。SMR-GT循环模型使用基本的热力学关系,并与现有的最先进的发电循环进行比较。SMR- gt循环包括一个82兆瓦的SMR循环和一个54兆瓦的燃气轮机循环。热交换器用于从燃气轮机废气中提取能量,以产生过热的主蒸汽,并为低压涡轮下游提供再热。这使得SMR循环的总机组输出功率增加了32 MWe,达到136 MWe。比较了单机SMR、典型联合循环燃气轮机(CCGT)、单机燃气轮机和SMR- gt联合循环的热效率、热率、二氧化碳排放量和净发电量。讨论了SMR-GT循环的几个优点。此外,燃气轮机的快速部署允许发电站在完成更复杂的SMR部分之前提供电力并获得收入。循环的SMR部分还减少了与燃气轮机发电站相关的总体燃料成本波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Combined Small Modular Reactor and Gas Turbine Cycle With Reheat
A novel combined small modular reactor (SMR) and gas turbine cycle is presented. This SMR-GT cycle is modeled using fundamental thermodynamic relationships and compared to existing state-of-the-art power generation cycles. The SMR-GT cycle includes an 82 MWe SMR cycle that is combined with a 54 MWe gas turbine cycle. A heat exchanger is used to extract energy from the gas turbine exhaust to create superheated main steam and provide reheat downstream of the LP turbine. This results in a 32 MWe increase in the SMR cycle for total unit output of 136 MWe. Comparisons of thermal efficiency, heat rate, CO2 emissions, and net generation are made between a stand-alone SMR, a typical combined cycle gas turbine (CCGT), standalone gas turbine and the combined SMR-GT cycles. Several advantages of the SMR-GT cycle are discussed. In addition, the rapid deployment of a gas turbine allows for a power station to deliver power and earn revenue prior to completion of the more complex SMR portion of the plant. The SMR portion of the cycle also reduces the overall fuel cost volatility associated with gas turbine based power station.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
768
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信