{"title":"一类满足切比雪夫多项式从属条件的解析函数的系数估计和Fekete-Szegö不等式","authors":"Eszter Szatmari, Ş. Altınkaya","doi":"10.2478/ausm-2019-0031","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺(z,t), \\left( {\\alpha {{\\left[ {{{{\\rm{zf'}}({\\rm{z}})} \\over {{\\rm{f}}(z)}}} \\right]}^\\delta } + (1 - \\alpha ){{\\left[ {{{{\\rm{zf'}}\\left( {\\rm{z}} \\right)} \\over {{\\rm{f}}(z)}}} \\right]}^\\mu }{{\\left[ {1 + {{{\\rm{zf''}}({\\rm{z}})} \\over {{\\rm{f'}}({\\rm{z}})}}} \\right]}^{1 - \\mu }}} \\right)\\,\\, \\prec \\mathcal{H}({\\rm{z}},{\\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials\",\"authors\":\"Eszter Szatmari, Ş. Altınkaya\",\"doi\":\"10.2478/ausm-2019-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺(z,t), \\\\left( {\\\\alpha {{\\\\left[ {{{{\\\\rm{zf'}}({\\\\rm{z}})} \\\\over {{\\\\rm{f}}(z)}}} \\\\right]}^\\\\delta } + (1 - \\\\alpha ){{\\\\left[ {{{{\\\\rm{zf'}}\\\\left( {\\\\rm{z}} \\\\right)} \\\\over {{\\\\rm{f}}(z)}}} \\\\right]}^\\\\mu }{{\\\\left[ {1 + {{{\\\\rm{zf''}}({\\\\rm{z}})} \\\\over {{\\\\rm{f'}}({\\\\rm{z}})}}} \\\\right]}^{1 - \\\\mu }}} \\\\right)\\\\,\\\\, \\\\prec \\\\mathcal{H}({\\\\rm{z}},{\\\\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2019-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials
Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺(z,t), \left( {\alpha {{\left[ {{{{\rm{zf'}}({\rm{z}})} \over {{\rm{f}}(z)}}} \right]}^\delta } + (1 - \alpha ){{\left[ {{{{\rm{zf'}}\left( {\rm{z}} \right)} \over {{\rm{f}}(z)}}} \right]}^\mu }{{\left[ {1 + {{{\rm{zf''}}({\rm{z}})} \over {{\rm{f'}}({\rm{z}})}}} \right]}^{1 - \mu }}} \right)\,\, \prec \mathcal{H}({\rm{z}},{\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.