一类满足切比雪夫多项式从属条件的解析函数的系数估计和Fekete-Szegö不等式

Pub Date : 2019-12-01 DOI:10.2478/ausm-2019-0031
Eszter Szatmari, Ş. Altınkaya
{"title":"一类满足切比雪夫多项式从属条件的解析函数的系数估计和Fekete-Szegö不等式","authors":"Eszter Szatmari, Ş. Altınkaya","doi":"10.2478/ausm-2019-0031","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺𝒣(z,t), \\left( {\\alpha {{\\left[ {{{{\\rm{zf'}}({\\rm{z}})} \\over {{\\rm{f}}(z)}}} \\right]}^\\delta } + (1 - \\alpha ){{\\left[ {{{{\\rm{zf'}}\\left( {\\rm{z}} \\right)} \\over {{\\rm{f}}(z)}}} \\right]}^\\mu }{{\\left[ {1 + {{{\\rm{zf''}}({\\rm{z}})} \\over {{\\rm{f'}}({\\rm{z}})}}} \\right]}^{1 - \\mu }}} \\right)\\,\\, \\prec \\mathcal{H}({\\rm{z}},{\\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials\",\"authors\":\"Eszter Szatmari, Ş. Altınkaya\",\"doi\":\"10.2478/ausm-2019-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺𝒣(z,t), \\\\left( {\\\\alpha {{\\\\left[ {{{{\\\\rm{zf'}}({\\\\rm{z}})} \\\\over {{\\\\rm{f}}(z)}}} \\\\right]}^\\\\delta } + (1 - \\\\alpha ){{\\\\left[ {{{{\\\\rm{zf'}}\\\\left( {\\\\rm{z}} \\\\right)} \\\\over {{\\\\rm{f}}(z)}}} \\\\right]}^\\\\mu }{{\\\\left[ {1 + {{{\\\\rm{zf''}}({\\\\rm{z}})} \\\\over {{\\\\rm{f'}}({\\\\rm{z}})}}} \\\\right]}^{1 - \\\\mu }}} \\\\right)\\\\,\\\\, \\\\prec \\\\mathcal{H}({\\\\rm{z}},{\\\\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2019-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文定义了一类解析函数,即满足以下条件(α[zf ' (z)f(z)]δ+(1-α)[zf ' (z)f(z)]μ[1+zf ' (z)]μ[1+zf ' (z)f ' (z)]1-μ)𝒣(z,t), \left ({\alpha{{\left[ {{{{\rm{zf'}}({\rm{z}})} \over {{\rm{f}}(z)}}} \right]} ^ \delta +(1-}\alpha) {{\left[ {{{{\rm{zf'}}\left( {\rm{z}} \right)} \over {{\rm{f}}(z)}}} \right]} ^ \mu}{{\left[ {1 + {{{\rm{zf''}}({\rm{z}})} \over {{\rm{f'}}({\rm{z}})}}} \right]} ^{1 -\mu}}}\right)\,\, \prec\mathcal{H}(,),其中α∈[0,1],δ∈[1,2],µ∈[0,1]。我们给出了这类的系数估计和Fekete-Szegö不等式。{\rm{z}}{\rm{t}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials
Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺𝒣(z,t), \left( {\alpha {{\left[ {{{{\rm{zf'}}({\rm{z}})} \over {{\rm{f}}(z)}}} \right]}^\delta } + (1 - \alpha ){{\left[ {{{{\rm{zf'}}\left( {\rm{z}} \right)} \over {{\rm{f}}(z)}}} \right]}^\mu }{{\left[ {1 + {{{\rm{zf''}}({\rm{z}})} \over {{\rm{f'}}({\rm{z}})}}} \right]}^{1 - \mu }}} \right)\,\, \prec \mathcal{H}({\rm{z}},{\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信