{"title":"基于广义Dieterici状态方程的烃类过热极限","authors":"R. Kamala, R. Balasubramanian","doi":"10.22232/stj.2021.09.01.01","DOIUrl":null,"url":null,"abstract":"A new three-parameter Dieterici type equation of state is employed for studying the high-temperature thermodynamic characteristics of hydrocarbons. This generalized equation of state differs from the known Dieterici equation of state by a modified attractive term. That is, a new thermodynamic similarity parameter is introduced in the attractive term of the Dieterici equation of state. The parameters of the equation of state are determined through the experimental values on the critical-point parameters of hydrocarbons. The equation of state is presented in the reduced form, from which follows the single-parameter law of corresponding states. The proposed equation of state gives the value of maximum attainable superheat for hydrocarbons of about 0.887 to 0.894 times the critical temperature. The new three- parameter generalized Dieterici equation of state offers an acceptable compliance with experimental results of maximum attainable superheat of hydrocarbons.","PeriodicalId":22107,"journal":{"name":"Silpakorn University Science and Technology Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superheating Limit of Hydrocarbons Based on a Generalized Dieterici Equation of State\",\"authors\":\"R. Kamala, R. Balasubramanian\",\"doi\":\"10.22232/stj.2021.09.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new three-parameter Dieterici type equation of state is employed for studying the high-temperature thermodynamic characteristics of hydrocarbons. This generalized equation of state differs from the known Dieterici equation of state by a modified attractive term. That is, a new thermodynamic similarity parameter is introduced in the attractive term of the Dieterici equation of state. The parameters of the equation of state are determined through the experimental values on the critical-point parameters of hydrocarbons. The equation of state is presented in the reduced form, from which follows the single-parameter law of corresponding states. The proposed equation of state gives the value of maximum attainable superheat for hydrocarbons of about 0.887 to 0.894 times the critical temperature. The new three- parameter generalized Dieterici equation of state offers an acceptable compliance with experimental results of maximum attainable superheat of hydrocarbons.\",\"PeriodicalId\":22107,\"journal\":{\"name\":\"Silpakorn University Science and Technology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silpakorn University Science and Technology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22232/stj.2021.09.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silpakorn University Science and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22232/stj.2021.09.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superheating Limit of Hydrocarbons Based on a Generalized Dieterici Equation of State
A new three-parameter Dieterici type equation of state is employed for studying the high-temperature thermodynamic characteristics of hydrocarbons. This generalized equation of state differs from the known Dieterici equation of state by a modified attractive term. That is, a new thermodynamic similarity parameter is introduced in the attractive term of the Dieterici equation of state. The parameters of the equation of state are determined through the experimental values on the critical-point parameters of hydrocarbons. The equation of state is presented in the reduced form, from which follows the single-parameter law of corresponding states. The proposed equation of state gives the value of maximum attainable superheat for hydrocarbons of about 0.887 to 0.894 times the critical temperature. The new three- parameter generalized Dieterici equation of state offers an acceptable compliance with experimental results of maximum attainable superheat of hydrocarbons.