带因果算子的脉冲微分方程的非线性边值问题

Wen-Li Wang, Jingfeng Tian
{"title":"带因果算子的脉冲微分方程的非线性边值问题","authors":"Wen-Li Wang, Jingfeng Tian","doi":"10.7153/DEA-09-13","DOIUrl":null,"url":null,"abstract":"In this work, we investigate nonlinear boundary value problems for impulsive differential equations with causal operators. Our boundary condition is given by a nonlinear function, and more general than ones given before. To begin with, we prove a comparison theorem. Then by using this theorem, we show the existence of solutions for linear problems. Finally, by using the monotone iterative technique, we obtain the existence of extremal solutions for nonlinear boundary value problems with causal operators. An example satisfying the assumptions is presented.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"31 1","pages":"161-170"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear boundary value problems for impulsive differential equations with causal operators\",\"authors\":\"Wen-Li Wang, Jingfeng Tian\",\"doi\":\"10.7153/DEA-09-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate nonlinear boundary value problems for impulsive differential equations with causal operators. Our boundary condition is given by a nonlinear function, and more general than ones given before. To begin with, we prove a comparison theorem. Then by using this theorem, we show the existence of solutions for linear problems. Finally, by using the monotone iterative technique, we obtain the existence of extremal solutions for nonlinear boundary value problems with causal operators. An example satisfying the assumptions is presented.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"31 1\",\"pages\":\"161-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-09-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了带因果算子的脉冲微分方程的非线性边值问题。我们的边界条件是由一个非线性函数给出的,它比以前给出的边界条件更一般。首先,我们证明一个比较定理。然后利用这个定理证明了线性问题解的存在性。最后,利用单调迭代技术,得到了一类带因果算子的非线性边值问题极值解的存在性。给出了一个满足上述假设的算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear boundary value problems for impulsive differential equations with causal operators
In this work, we investigate nonlinear boundary value problems for impulsive differential equations with causal operators. Our boundary condition is given by a nonlinear function, and more general than ones given before. To begin with, we prove a comparison theorem. Then by using this theorem, we show the existence of solutions for linear problems. Finally, by using the monotone iterative technique, we obtain the existence of extremal solutions for nonlinear boundary value problems with causal operators. An example satisfying the assumptions is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信