{"title":"单壁碳纳米管拓扑缺陷及其对气敏机理影响的从头算研究","authors":"A. Srirangarajan, M. Upadhyay Kahaly","doi":"10.1063/1.3587023","DOIUrl":null,"url":null,"abstract":"Carbon Nanotubes based sensors are gaining popularity due to their high selectivity, sensitivity, fast response and recovery time, low operating temperatures and low power consumption. However, due to a strong sp2 carbon-carbon bonding within CNTs, the interaction between defect free CNT walls and gas molecules had been expected to be relatively weak and consequently, the electronic transport properties of the nanotubes are insensitive to the exposure of CNTs to various gas molecules.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ab initio study of topological defects in single walled carbon nanotubes and their effect on gas sensing mechanism\",\"authors\":\"A. Srirangarajan, M. Upadhyay Kahaly\",\"doi\":\"10.1063/1.3587023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon Nanotubes based sensors are gaining popularity due to their high selectivity, sensitivity, fast response and recovery time, low operating temperatures and low power consumption. However, due to a strong sp2 carbon-carbon bonding within CNTs, the interaction between defect free CNT walls and gas molecules had been expected to be relatively weak and consequently, the electronic transport properties of the nanotubes are insensitive to the exposure of CNTs to various gas molecules.\",\"PeriodicalId\":6354,\"journal\":{\"name\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.3587023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3587023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ab initio study of topological defects in single walled carbon nanotubes and their effect on gas sensing mechanism
Carbon Nanotubes based sensors are gaining popularity due to their high selectivity, sensitivity, fast response and recovery time, low operating temperatures and low power consumption. However, due to a strong sp2 carbon-carbon bonding within CNTs, the interaction between defect free CNT walls and gas molecules had been expected to be relatively weak and consequently, the electronic transport properties of the nanotubes are insensitive to the exposure of CNTs to various gas molecules.