姜黄素在体内和体外肠道吸收特性的研究

M. Xue, Y. Cheng, L. Xu, L. Zhang
{"title":"姜黄素在体内和体外肠道吸收特性的研究","authors":"M. Xue, Y. Cheng, L. Xu, L. Zhang","doi":"10.21065/1920-4159.1000246","DOIUrl":null,"url":null,"abstract":"Curcumin is the yellow pigment of turmeric. In addition to its positive safety profile, curcumin is reported to have beneficial pharmacologic effects as an antioxidant, antitumor, and anti-inflammatory agent, along with other promising pharmacologic effects on the cardiovascular and digestive systems. Curcumin is poorly absorbed, which limits its value in clinical application. In order to improve the poor bioavailability and enhance the pharmacologic action of curcumin, we studied its absorption mechanisms in an animal model in vivo and in a Caco-2 cell model in vitro. The absorption rates of curcumin at different concentrations in blank intestinal juice were not the same. The absorption rate of curcumin solution at a concentration of 5 μg/mL was the highest, followed by 10 μg/mL, and the minimum absorption occurred at 20 μg/mL. The absorption rate in the ileum decreased as the concentration of curcumin increased, which reminds us that absorption in the ileum does not result from simple passive diffusion but rather shows the characteristics of active transport. Curcumin may be a P-glycoprotein (P-gp) substrate and thus may be affected by P-gp efflux, and thus the addition of a P-gp inhibitor such as verapamil can promote the intestinal absorption of curcumin. A Caco-2 cell model was established to accurately study curcumin’s absorption mechanisms. We found that, for curcumin in a 5 μg/mL solution, the Caco-2 cell monolayer transport was passive, and when the concentration was increased to 10 μg/mL efflux influenced the transport but not extensively. The transport mode of curcuminthe appears to be passive diffusion at concentrations 10 μg/mL active transport is involved. In summary, curcumin is transported by a combination of passive diffusion and active transport, curcumin is a substrate for the intestinal transporter P-gp, and intestinal absorption of curcumin is regulated by intestinal P-gp transport.","PeriodicalId":15238,"journal":{"name":"Journal of Applied Pharmacy","volume":"56 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Study of the Intestinal Absorption Characteristics of Curcumin In Vivoand In Vitro\",\"authors\":\"M. Xue, Y. Cheng, L. Xu, L. Zhang\",\"doi\":\"10.21065/1920-4159.1000246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curcumin is the yellow pigment of turmeric. In addition to its positive safety profile, curcumin is reported to have beneficial pharmacologic effects as an antioxidant, antitumor, and anti-inflammatory agent, along with other promising pharmacologic effects on the cardiovascular and digestive systems. Curcumin is poorly absorbed, which limits its value in clinical application. In order to improve the poor bioavailability and enhance the pharmacologic action of curcumin, we studied its absorption mechanisms in an animal model in vivo and in a Caco-2 cell model in vitro. The absorption rates of curcumin at different concentrations in blank intestinal juice were not the same. The absorption rate of curcumin solution at a concentration of 5 μg/mL was the highest, followed by 10 μg/mL, and the minimum absorption occurred at 20 μg/mL. The absorption rate in the ileum decreased as the concentration of curcumin increased, which reminds us that absorption in the ileum does not result from simple passive diffusion but rather shows the characteristics of active transport. Curcumin may be a P-glycoprotein (P-gp) substrate and thus may be affected by P-gp efflux, and thus the addition of a P-gp inhibitor such as verapamil can promote the intestinal absorption of curcumin. A Caco-2 cell model was established to accurately study curcumin’s absorption mechanisms. We found that, for curcumin in a 5 μg/mL solution, the Caco-2 cell monolayer transport was passive, and when the concentration was increased to 10 μg/mL efflux influenced the transport but not extensively. The transport mode of curcuminthe appears to be passive diffusion at concentrations 10 μg/mL active transport is involved. In summary, curcumin is transported by a combination of passive diffusion and active transport, curcumin is a substrate for the intestinal transporter P-gp, and intestinal absorption of curcumin is regulated by intestinal P-gp transport.\",\"PeriodicalId\":15238,\"journal\":{\"name\":\"Journal of Applied Pharmacy\",\"volume\":\"56 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21065/1920-4159.1000246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21065/1920-4159.1000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

姜黄素是姜黄中的黄色色素。除了其积极的安全性外,姜黄素据报道还具有抗氧化、抗肿瘤和抗炎的有益药理作用,以及对心血管和消化系统的其他有希望的药理作用。姜黄素吸收不良,限制了其临床应用价值。为了改善姜黄素较差的生物利用度,增强其药理作用,我们在体内动物模型和体外Caco-2细胞模型上研究了姜黄素的吸收机制。不同浓度的姜黄素在空白肠液中的吸收率不同。姜黄素溶液在浓度为5 μg/mL时吸收率最高,10 μg/mL次之,20 μg/mL吸收率最低。回肠中姜黄素的吸收率随着浓度的增加而降低,提示其在回肠中的吸收不是简单的被动扩散,而是表现出主动运输的特点。姜黄素可能是p -糖蛋白(P-gp)的底物,因此可能受到P-gp外排的影响,因此添加P-gp抑制剂如维拉帕米可以促进姜黄素的肠道吸收。建立Caco-2细胞模型,准确研究姜黄素的吸收机制。我们发现,姜黄素在5 μg/mL溶液中,Caco-2细胞单层转运是被动的,当浓度增加到10 μg/mL时,外排影响转运但不广泛。在浓度为10 μg/mL时,姜黄素的转运方式为被动扩散,参与主动转运。综上所述,姜黄素的运输是被动扩散和主动运输的结合,姜黄素是肠道转运体P-gp的底物,肠道P-gp转运调节了姜黄素的肠道吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the Intestinal Absorption Characteristics of Curcumin In Vivoand In Vitro
Curcumin is the yellow pigment of turmeric. In addition to its positive safety profile, curcumin is reported to have beneficial pharmacologic effects as an antioxidant, antitumor, and anti-inflammatory agent, along with other promising pharmacologic effects on the cardiovascular and digestive systems. Curcumin is poorly absorbed, which limits its value in clinical application. In order to improve the poor bioavailability and enhance the pharmacologic action of curcumin, we studied its absorption mechanisms in an animal model in vivo and in a Caco-2 cell model in vitro. The absorption rates of curcumin at different concentrations in blank intestinal juice were not the same. The absorption rate of curcumin solution at a concentration of 5 μg/mL was the highest, followed by 10 μg/mL, and the minimum absorption occurred at 20 μg/mL. The absorption rate in the ileum decreased as the concentration of curcumin increased, which reminds us that absorption in the ileum does not result from simple passive diffusion but rather shows the characteristics of active transport. Curcumin may be a P-glycoprotein (P-gp) substrate and thus may be affected by P-gp efflux, and thus the addition of a P-gp inhibitor such as verapamil can promote the intestinal absorption of curcumin. A Caco-2 cell model was established to accurately study curcumin’s absorption mechanisms. We found that, for curcumin in a 5 μg/mL solution, the Caco-2 cell monolayer transport was passive, and when the concentration was increased to 10 μg/mL efflux influenced the transport but not extensively. The transport mode of curcuminthe appears to be passive diffusion at concentrations 10 μg/mL active transport is involved. In summary, curcumin is transported by a combination of passive diffusion and active transport, curcumin is a substrate for the intestinal transporter P-gp, and intestinal absorption of curcumin is regulated by intestinal P-gp transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信