{"title":"环面中地转模共振的研究","authors":"Jérôme Adou","doi":"10.1016/S1287-4620(00)87510-9","DOIUrl":null,"url":null,"abstract":"<div><p>We show that when (ΩR/c<sub><em>0</em></sub>) ≪ <em>1</em>, and (a/R) ≪ <em>1</em>, the air motion in a torus is governed by the problem of inertial oscillations in this torus excited by a perturbation on its surface, which moves with constant angular velocity Ω and gets recurrently at the same place with period <em>2π/Ω</em>. This excitation makes one of the inertial oscillation modes enter in resonance, the geostrophic mode, which increases proportionally to time when t → ∞.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 14","pages":"Pages 1391-1396"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)87510-9","citationCount":"3","resultStr":"{\"title\":\"Étude de la résonance du mode géostrophique dans un tore\",\"authors\":\"Jérôme Adou\",\"doi\":\"10.1016/S1287-4620(00)87510-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that when (ΩR/c<sub><em>0</em></sub>) ≪ <em>1</em>, and (a/R) ≪ <em>1</em>, the air motion in a torus is governed by the problem of inertial oscillations in this torus excited by a perturbation on its surface, which moves with constant angular velocity Ω and gets recurrently at the same place with period <em>2π/Ω</em>. This excitation makes one of the inertial oscillation modes enter in resonance, the geostrophic mode, which increases proportionally to time when t → ∞.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"327 14\",\"pages\":\"Pages 1391-1396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)87510-9\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000875109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000875109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Étude de la résonance du mode géostrophique dans un tore
We show that when (ΩR/c0) ≪ 1, and (a/R) ≪ 1, the air motion in a torus is governed by the problem of inertial oscillations in this torus excited by a perturbation on its surface, which moves with constant angular velocity Ω and gets recurrently at the same place with period 2π/Ω. This excitation makes one of the inertial oscillation modes enter in resonance, the geostrophic mode, which increases proportionally to time when t → ∞.