拟最优空间网格的收敛自适应随机Galerkin有限元法

M. Eigel, C. J. Gittelson, C. Schwab, E. Zander
{"title":"拟最优空间网格的收敛自适应随机Galerkin有限元法","authors":"M. Eigel, C. J. Gittelson, C. Schwab, E. Zander","doi":"10.3929/ETHZ-A-010386302","DOIUrl":null,"url":null,"abstract":"We analyze a posteriori error estimation and adaptive refinement algorithms for stochastic Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A resid- ual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the Finite Element discretization in physical space in energy norm is established. It is proved that the adaptive algorithm converges. To this end, a contraction property of its iterates is proved. It is shown that the sequences of triangulations which are produced by the algorithm in the FE discretization of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical results.","PeriodicalId":22276,"journal":{"name":"The annual research report","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes\",\"authors\":\"M. Eigel, C. J. Gittelson, C. Schwab, E. Zander\",\"doi\":\"10.3929/ETHZ-A-010386302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze a posteriori error estimation and adaptive refinement algorithms for stochastic Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A resid- ual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the Finite Element discretization in physical space in energy norm is established. It is proved that the adaptive algorithm converges. To this end, a contraction property of its iterates is proved. It is shown that the sequences of triangulations which are produced by the algorithm in the FE discretization of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical results.\",\"PeriodicalId\":22276,\"journal\":{\"name\":\"The annual research report\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The annual research report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ETHZ-A-010386302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The annual research report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-010386302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

本文分析了随机伽辽金有限元法在可数参数椭圆边值问题上的后验误差估计和自适应改进算法。建立了一个残差估计器,将gpc-Galerkin离散在参数空间的影响与有限元离散在物理空间的影响在能量范数上分离开来。证明了自适应算法的收敛性。为此,证明了其迭代的一个收缩性质。结果表明,该算法对主动gpc系数进行有限元离散时得到的三角剖分序列是渐近最优的。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes
We analyze a posteriori error estimation and adaptive refinement algorithms for stochastic Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A resid- ual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the Finite Element discretization in physical space in energy norm is established. It is proved that the adaptive algorithm converges. To this end, a contraction property of its iterates is proved. It is shown that the sequences of triangulations which are produced by the algorithm in the FE discretization of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信