半导体氧化物气体传感器:传导机制与传感性能的关系

A. Fioravanti, S. Morandi, M. Carotta
{"title":"半导体氧化物气体传感器:传导机制与传感性能的关系","authors":"A. Fioravanti, S. Morandi, M. Carotta","doi":"10.3390/csac2021-10472","DOIUrl":null,"url":null,"abstract":"In this work, a variety of semiconducting oxides were prepared and principally characterized by means of spectroscopic techniques (absorbance FT-IR, diffuse reflectance UV-Vis-NIR) to shed light on the electronic properties and defects involved at the roots of gas sensing capabilities. The thick films were obtained by screen printing technology on which electrical characterization and gas sensing measurements were performed. From the cross analysis of the results, a description of the specific sensing mechanism for each material is proposed.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconductor Oxide Gas Sensors: Correlation between Conduction Mechanisms and Their Sensing Performances\",\"authors\":\"A. Fioravanti, S. Morandi, M. Carotta\",\"doi\":\"10.3390/csac2021-10472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a variety of semiconducting oxides were prepared and principally characterized by means of spectroscopic techniques (absorbance FT-IR, diffuse reflectance UV-Vis-NIR) to shed light on the electronic properties and defects involved at the roots of gas sensing capabilities. The thick films were obtained by screen printing technology on which electrical characterization and gas sensing measurements were performed. From the cross analysis of the results, a description of the specific sensing mechanism for each material is proposed.\",\"PeriodicalId\":9815,\"journal\":{\"name\":\"Chemistry Proceedings\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/csac2021-10472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,制备了各种半导体氧化物,并主要通过光谱技术(吸收FT-IR,漫反射UV-Vis-NIR)进行表征,以揭示气体传感能力根源所涉及的电子特性和缺陷。通过丝网印刷技术获得了厚膜,并对其进行了电学表征和气敏测量。通过对结果的交叉分析,对每种材料的具体传感机理进行了描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiconductor Oxide Gas Sensors: Correlation between Conduction Mechanisms and Their Sensing Performances
In this work, a variety of semiconducting oxides were prepared and principally characterized by means of spectroscopic techniques (absorbance FT-IR, diffuse reflectance UV-Vis-NIR) to shed light on the electronic properties and defects involved at the roots of gas sensing capabilities. The thick films were obtained by screen printing technology on which electrical characterization and gas sensing measurements were performed. From the cross analysis of the results, a description of the specific sensing mechanism for each material is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信