探索机器学习在异构多处理器上的线程表征

Cha V. Li, V. Petrucci, D. Mossé
{"title":"探索机器学习在异构多处理器上的线程表征","authors":"Cha V. Li, V. Petrucci, D. Mossé","doi":"10.1145/3139645.3139664","DOIUrl":null,"url":null,"abstract":"We introduce a thread characterization method that explores hardware performance counters and machine learning techniques to automate estimating workload execution on heterogeneous processors. We show that our characterization scheme achieves higher accuracy when predicting performance indicators, such as instructions per cycle and last-level cache misses, commonly used to determine the mapping of threads to processor types at runtime. We also show that support vector regression achieves higher accuracy when compared to linear regression, and has very low (1%) overhead. The results presented in this paper can provide a foundation for advanced investigations and interesting new directions in intelligent thread scheduling and power management on multiprocessors.","PeriodicalId":7046,"journal":{"name":"ACM SIGOPS Oper. Syst. Rev.","volume":"35 1","pages":"113-123"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploring Machine Learning for Thread Characterization on Heterogeneous Multiprocessors\",\"authors\":\"Cha V. Li, V. Petrucci, D. Mossé\",\"doi\":\"10.1145/3139645.3139664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a thread characterization method that explores hardware performance counters and machine learning techniques to automate estimating workload execution on heterogeneous processors. We show that our characterization scheme achieves higher accuracy when predicting performance indicators, such as instructions per cycle and last-level cache misses, commonly used to determine the mapping of threads to processor types at runtime. We also show that support vector regression achieves higher accuracy when compared to linear regression, and has very low (1%) overhead. The results presented in this paper can provide a foundation for advanced investigations and interesting new directions in intelligent thread scheduling and power management on multiprocessors.\",\"PeriodicalId\":7046,\"journal\":{\"name\":\"ACM SIGOPS Oper. Syst. Rev.\",\"volume\":\"35 1\",\"pages\":\"113-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGOPS Oper. Syst. Rev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139645.3139664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGOPS Oper. Syst. Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139645.3139664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们介绍了一种线程表征方法,该方法探索了硬件性能计数器和机器学习技术,以自动估计异构处理器上的工作负载执行。我们表明,我们的表征方案在预测性能指标(例如每个周期的指令和最后一级缓存缺失)时实现了更高的准确性,这些性能指标通常用于确定线程到运行时处理器类型的映射。我们还表明,与线性回归相比,支持向量回归实现了更高的精度,并且开销非常低(1%)。本文的研究结果为多处理器智能线程调度和电源管理的深入研究和有趣的新方向提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Machine Learning for Thread Characterization on Heterogeneous Multiprocessors
We introduce a thread characterization method that explores hardware performance counters and machine learning techniques to automate estimating workload execution on heterogeneous processors. We show that our characterization scheme achieves higher accuracy when predicting performance indicators, such as instructions per cycle and last-level cache misses, commonly used to determine the mapping of threads to processor types at runtime. We also show that support vector regression achieves higher accuracy when compared to linear regression, and has very low (1%) overhead. The results presented in this paper can provide a foundation for advanced investigations and interesting new directions in intelligent thread scheduling and power management on multiprocessors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信