Takuya Nishikawa, K. Saku, Takafumi Sakamoto, Yasuhiro Oga, T. Tohyama, T. Kishi, K. Sunagawa
{"title":"在肺动脉高压大鼠模型中,rho激酶抑制剂降低肺动脉阻力,而增加顺应性","authors":"Takuya Nishikawa, K. Saku, Takafumi Sakamoto, Yasuhiro Oga, T. Tohyama, T. Kishi, K. Sunagawa","doi":"10.11239/JSMBE.54ANNUAL.1T6-2-2-1","DOIUrl":null,"url":null,"abstract":"Although the dynamic mechanical properties such as arterial compliance (C) have been shown to predict increased mortality in patients with pulmonary arterial hypertension (PAH), a simple static index, i.e., pulmonary arterial resistance (R) has been exclusively used in clinical settings. We examined how a Rho-kinase inhibitor, fasudil, that is known to suppress vasoconstriction, affects pulmonary artery input impedance (Z) in Sugen/Hypoxia (SuHx) PAH in rats. We measured Z before PAH induction (Normal), and re-measured before/after fasudil injection (10 mg/kg) (PAH/Fasudil). PAH increased R while Fasudil decreased R (Normal: 16.3±2.6, PAH: 56.5±6.9, Fasudil: 39.9±5.2 mmHg/ml/sec, p<0.01). In contrast, PAH decreased C while Fasudil increased C (Normal: 3.6±0.6, PAH: 1.8±0.4, Fasudil: 2.5±0.8 ×103 ml/mmHg, p<0.01). We conclude that the pulmonary arterial impedance may serve as a new tool in analyzing vascular mechanics to assess the severity or the drug efficacy in PAH patients.","PeriodicalId":39233,"journal":{"name":"Transactions of Japanese Society for Medical and Biological Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rho-kinase inhibitor decreased pulmonary artery resistance, whereas increased compliance in a rat model of pulmonary hypertension\",\"authors\":\"Takuya Nishikawa, K. Saku, Takafumi Sakamoto, Yasuhiro Oga, T. Tohyama, T. Kishi, K. Sunagawa\",\"doi\":\"10.11239/JSMBE.54ANNUAL.1T6-2-2-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the dynamic mechanical properties such as arterial compliance (C) have been shown to predict increased mortality in patients with pulmonary arterial hypertension (PAH), a simple static index, i.e., pulmonary arterial resistance (R) has been exclusively used in clinical settings. We examined how a Rho-kinase inhibitor, fasudil, that is known to suppress vasoconstriction, affects pulmonary artery input impedance (Z) in Sugen/Hypoxia (SuHx) PAH in rats. We measured Z before PAH induction (Normal), and re-measured before/after fasudil injection (10 mg/kg) (PAH/Fasudil). PAH increased R while Fasudil decreased R (Normal: 16.3±2.6, PAH: 56.5±6.9, Fasudil: 39.9±5.2 mmHg/ml/sec, p<0.01). In contrast, PAH decreased C while Fasudil increased C (Normal: 3.6±0.6, PAH: 1.8±0.4, Fasudil: 2.5±0.8 ×103 ml/mmHg, p<0.01). We conclude that the pulmonary arterial impedance may serve as a new tool in analyzing vascular mechanics to assess the severity or the drug efficacy in PAH patients.\",\"PeriodicalId\":39233,\"journal\":{\"name\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11239/JSMBE.54ANNUAL.1T6-2-2-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Japanese Society for Medical and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11239/JSMBE.54ANNUAL.1T6-2-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Rho-kinase inhibitor decreased pulmonary artery resistance, whereas increased compliance in a rat model of pulmonary hypertension
Although the dynamic mechanical properties such as arterial compliance (C) have been shown to predict increased mortality in patients with pulmonary arterial hypertension (PAH), a simple static index, i.e., pulmonary arterial resistance (R) has been exclusively used in clinical settings. We examined how a Rho-kinase inhibitor, fasudil, that is known to suppress vasoconstriction, affects pulmonary artery input impedance (Z) in Sugen/Hypoxia (SuHx) PAH in rats. We measured Z before PAH induction (Normal), and re-measured before/after fasudil injection (10 mg/kg) (PAH/Fasudil). PAH increased R while Fasudil decreased R (Normal: 16.3±2.6, PAH: 56.5±6.9, Fasudil: 39.9±5.2 mmHg/ml/sec, p<0.01). In contrast, PAH decreased C while Fasudil increased C (Normal: 3.6±0.6, PAH: 1.8±0.4, Fasudil: 2.5±0.8 ×103 ml/mmHg, p<0.01). We conclude that the pulmonary arterial impedance may serve as a new tool in analyzing vascular mechanics to assess the severity or the drug efficacy in PAH patients.