t分布源盲分离的黎曼方法

Florent Bouchard, A. Breloy, G. Ginolhac, A. Renaux
{"title":"t分布源盲分离的黎曼方法","authors":"Florent Bouchard, A. Breloy, G. Ginolhac, A. Renaux","doi":"10.23919/Eusipco47968.2020.9287783","DOIUrl":null,"url":null,"abstract":"The blind source separation problem is considered through the approach based on non-stationarity and coloration. In both cases, the sources are usually assumed to be Gaussian. In this paper, we extend previous works in order to handle sources drawn from the multivariate Student t-distribution. After studying the structure of the parameter manifold in this case, a new blind source separation criterion based on the log-likelihood of the considered distribution is proposed. To solve the resulting optimization problem, Riemannian optimization on the parameter manifold is leveraged. Practical expressions of the mathematical tools required by first order based Riemmanian optimization methods for this parameter manifold are derived to this end. The performance of the proposed method is illustrated on simulated data.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"22 1","pages":"965-969"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Riemannian approach to blind separation of t-distributed sources\",\"authors\":\"Florent Bouchard, A. Breloy, G. Ginolhac, A. Renaux\",\"doi\":\"10.23919/Eusipco47968.2020.9287783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The blind source separation problem is considered through the approach based on non-stationarity and coloration. In both cases, the sources are usually assumed to be Gaussian. In this paper, we extend previous works in order to handle sources drawn from the multivariate Student t-distribution. After studying the structure of the parameter manifold in this case, a new blind source separation criterion based on the log-likelihood of the considered distribution is proposed. To solve the resulting optimization problem, Riemannian optimization on the parameter manifold is leveraged. Practical expressions of the mathematical tools required by first order based Riemmanian optimization methods for this parameter manifold are derived to this end. The performance of the proposed method is illustrated on simulated data.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"22 1\",\"pages\":\"965-969\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过基于非平稳性和着色的方法来考虑盲源分离问题。在这两种情况下,通常假设源是高斯的。在本文中,我们扩展了以前的工作,以处理从多元学生t分布中提取的源。在研究了这种情况下参数流形的结构后,提出了一种基于对数似然分布的盲源分离准则。为了解决最终的优化问题,利用了参数流形的黎曼优化。为此,推导了该参数流形一阶黎曼优化方法所需数学工具的实用表达式。仿真数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Riemannian approach to blind separation of t-distributed sources
The blind source separation problem is considered through the approach based on non-stationarity and coloration. In both cases, the sources are usually assumed to be Gaussian. In this paper, we extend previous works in order to handle sources drawn from the multivariate Student t-distribution. After studying the structure of the parameter manifold in this case, a new blind source separation criterion based on the log-likelihood of the considered distribution is proposed. To solve the resulting optimization problem, Riemannian optimization on the parameter manifold is leveraged. Practical expressions of the mathematical tools required by first order based Riemmanian optimization methods for this parameter manifold are derived to this end. The performance of the proposed method is illustrated on simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信