基于图的异构数据检索与分析交互式数据联合系统

Xuan-Son Vu, Addi Ait-Mlouk, E. Elmroth, Lili Jiang
{"title":"基于图的异构数据检索与分析交互式数据联合系统","authors":"Xuan-Son Vu, Addi Ait-Mlouk, E. Elmroth, Lili Jiang","doi":"10.1145/3308558.3314138","DOIUrl":null,"url":null,"abstract":"Given the increasing number of heterogeneous data stored in relational databases, file systems or cloud environment, it needs to be easily accessed and semantically connected for further data analytic. The potential of data federation is largely untapped, this paper presents an interactive data federation system (https://vimeo.com/319473546) by applying large-scale techniques including heterogeneous data federation, natural language processing, association rules and semantic web to perform data retrieval and analytics on social network data. The system first creates a Virtual Database (VDB) to virtually integrate data from multiple data sources. Next, a RDF generator is built to unify data, together with SPARQL queries, to support semantic data search over the processed text data by natural language processing (NLP). Association rule analysis is used to discover the patterns and recognize the most important co-occurrences of variables from multiple data sources. The system demonstrates how it facilitates interactive data analytic towards different application scenarios (e.g., sentiment analysis, privacy-concern analysis, community detection).","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Graph-based Interactive Data Federation System for Heterogeneous Data Retrieval and Analytics\",\"authors\":\"Xuan-Son Vu, Addi Ait-Mlouk, E. Elmroth, Lili Jiang\",\"doi\":\"10.1145/3308558.3314138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the increasing number of heterogeneous data stored in relational databases, file systems or cloud environment, it needs to be easily accessed and semantically connected for further data analytic. The potential of data federation is largely untapped, this paper presents an interactive data federation system (https://vimeo.com/319473546) by applying large-scale techniques including heterogeneous data federation, natural language processing, association rules and semantic web to perform data retrieval and analytics on social network data. The system first creates a Virtual Database (VDB) to virtually integrate data from multiple data sources. Next, a RDF generator is built to unify data, together with SPARQL queries, to support semantic data search over the processed text data by natural language processing (NLP). Association rule analysis is used to discover the patterns and recognize the most important co-occurrences of variables from multiple data sources. The system demonstrates how it facilitates interactive data analytic towards different application scenarios (e.g., sentiment analysis, privacy-concern analysis, community detection).\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3314138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3314138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于存储在关系数据库、文件系统或云环境中的异构数据越来越多,因此需要易于访问和语义连接,以便进行进一步的数据分析。数据联合的潜力在很大程度上尚未开发,本文提出了一个交互式数据联合系统(https://vimeo.com/319473546),通过应用大规模技术,包括异构数据联合、自然语言处理、关联规则和语义网,对社交网络数据进行数据检索和分析。系统首先创建一个虚拟数据库(VDB)来虚拟地集成来自多个数据源的数据。接下来,构建RDF生成器来统一数据和SPARQL查询,以支持通过自然语言处理(NLP)对处理过的文本数据进行语义数据搜索。关联规则分析用于发现模式并识别来自多个数据源的变量的最重要的共现。该系统演示了它如何促进针对不同应用场景的交互式数据分析(例如,情感分析,隐私问题分析,社区检测)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-based Interactive Data Federation System for Heterogeneous Data Retrieval and Analytics
Given the increasing number of heterogeneous data stored in relational databases, file systems or cloud environment, it needs to be easily accessed and semantically connected for further data analytic. The potential of data federation is largely untapped, this paper presents an interactive data federation system (https://vimeo.com/319473546) by applying large-scale techniques including heterogeneous data federation, natural language processing, association rules and semantic web to perform data retrieval and analytics on social network data. The system first creates a Virtual Database (VDB) to virtually integrate data from multiple data sources. Next, a RDF generator is built to unify data, together with SPARQL queries, to support semantic data search over the processed text data by natural language processing (NLP). Association rule analysis is used to discover the patterns and recognize the most important co-occurrences of variables from multiple data sources. The system demonstrates how it facilitates interactive data analytic towards different application scenarios (e.g., sentiment analysis, privacy-concern analysis, community detection).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信