跳跃型Fleming-Viot过程的随机测量密度所满足的微分方程

Pub Date : 2015-01-02 DOI:10.1080/17442508.2014.915972
T. T. da Silva, M. Fragoso
{"title":"跳跃型Fleming-Viot过程的随机测量密度所满足的微分方程","authors":"T. T. da Silva, M. Fragoso","doi":"10.1080/17442508.2014.915972","DOIUrl":null,"url":null,"abstract":"The subject matter of this paper is the so-called jump-type Fleming–Viot process. The main result shows that the density of the process has a representation as the solution of a stochastic partial differential equation. When reduced to the Fleming–Viot process, our result recovers the result of N. Konno and T. Shiga [Stochastic partial differential equations for some measure-valued diffusions, Probab. Theory Relat. Fields 79 (1988), pp. 201–225].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the differential equation satisfied by the random measure density of a jump-type Fleming–Viot process\",\"authors\":\"T. T. da Silva, M. Fragoso\",\"doi\":\"10.1080/17442508.2014.915972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject matter of this paper is the so-called jump-type Fleming–Viot process. The main result shows that the density of the process has a representation as the solution of a stochastic partial differential equation. When reduced to the Fleming–Viot process, our result recovers the result of N. Konno and T. Shiga [Stochastic partial differential equations for some measure-valued diffusions, Probab. Theory Relat. Fields 79 (1988), pp. 201–225].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.915972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.915972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主题是所谓的跳跃型弗莱明-维奥过程。主要结果表明,过程的密度可以表示为随机偏微分方程的解。当简化到Fleming-Viot过程时,我们的结果恢复了N. Konno和T. Shiga[一些测量值扩散的随机偏微分方程,Probab]的结果。代数理论。Fields 79 (1988), pp 201-225]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the differential equation satisfied by the random measure density of a jump-type Fleming–Viot process
The subject matter of this paper is the so-called jump-type Fleming–Viot process. The main result shows that the density of the process has a representation as the solution of a stochastic partial differential equation. When reduced to the Fleming–Viot process, our result recovers the result of N. Konno and T. Shiga [Stochastic partial differential equations for some measure-valued diffusions, Probab. Theory Relat. Fields 79 (1988), pp. 201–225].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信