利用数据分组技术提高GM(1,1)的准确性及其在日本德岛市机动车量和CO2排放预测中的应用

IF 0.7 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Vincent B. Getanda, H. Oya, T. Kubo
{"title":"利用数据分组技术提高GM(1,1)的准确性及其在日本德岛市机动车量和CO2排放预测中的应用","authors":"Vincent B. Getanda, H. Oya, T. Kubo","doi":"10.2316/P.2017.848-016","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem for improving the accuracy of the grey model (GM(1,1)) in traffic flow and CO2 emission prediction. In order to improve the prediction accuracy, we adopt a data grouping technique along with the GM(1,1) and a Grouped GM(1,1) (GGM(1,1)) is established. Moreover, by applying techniques of accumulated generating operation (AGO) and inverse accumulated generating operation (IAGO) on training data collected from national route 11 of Tokushima City, Japan, the accuracy of GM(1,1) and GGM(1,1) in forecasting vehicle volume and CO2 emissions is investigated. Therefore, in this paper we contribute to develop and enhance the GM(1,1)’s accuracy in prediction.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"72 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving the Accuracy of the GM(1,1) by Data Grouping Technique and Its Application to Forecast Vehicle Volume and CO2 Emission in Tokushima City, Japan\",\"authors\":\"Vincent B. Getanda, H. Oya, T. Kubo\",\"doi\":\"10.2316/P.2017.848-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem for improving the accuracy of the grey model (GM(1,1)) in traffic flow and CO2 emission prediction. In order to improve the prediction accuracy, we adopt a data grouping technique along with the GM(1,1) and a Grouped GM(1,1) (GGM(1,1)) is established. Moreover, by applying techniques of accumulated generating operation (AGO) and inverse accumulated generating operation (IAGO) on training data collected from national route 11 of Tokushima City, Japan, the accuracy of GM(1,1) and GGM(1,1) in forecasting vehicle volume and CO2 emissions is investigated. Therefore, in this paper we contribute to develop and enhance the GM(1,1)’s accuracy in prediction.\",\"PeriodicalId\":49801,\"journal\":{\"name\":\"Modeling Identification and Control\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling Identification and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.848-016\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2316/P.2017.848-016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了提高灰色模型GM(1,1)在交通流和二氧化碳排放预测中的精度问题。为了提高预测精度,我们采用了GM(1,1)的数据分组技术,建立了一个分组GM(1,1) (GGM(1,1))。利用累积发电操作(AGO)和逆累积发电操作(IAGO)技术对日本德岛市11号国道的训练数据进行分析,考察GM(1,1)和GGM(1,1)预测车流量和CO2排放量的准确性。因此,本文为进一步发展和提高GM(1,1)的预测精度做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Accuracy of the GM(1,1) by Data Grouping Technique and Its Application to Forecast Vehicle Volume and CO2 Emission in Tokushima City, Japan
This paper deals with the problem for improving the accuracy of the grey model (GM(1,1)) in traffic flow and CO2 emission prediction. In order to improve the prediction accuracy, we adopt a data grouping technique along with the GM(1,1) and a Grouped GM(1,1) (GGM(1,1)) is established. Moreover, by applying techniques of accumulated generating operation (AGO) and inverse accumulated generating operation (IAGO) on training data collected from national route 11 of Tokushima City, Japan, the accuracy of GM(1,1) and GGM(1,1) in forecasting vehicle volume and CO2 emissions is investigated. Therefore, in this paper we contribute to develop and enhance the GM(1,1)’s accuracy in prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modeling Identification and Control
Modeling Identification and Control 工程技术-计算机:控制论
CiteScore
3.30
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信