{"title":"锂离子聚合物电池电芯温度分布:实验与建模","authors":"Yiqun Liu, Y. G. Liao, Ming-Chia Lai","doi":"10.1109/VTCFall.2019.8890974","DOIUrl":null,"url":null,"abstract":"The performance of the lithium-ion battery is highly dependent on the operating temperature. In order to keep the operating temperature within the optimal range, a thermal management system (TMS) is used to cool down or warm up the battery. Understanding the heat generation characteristics and temperature distribution of the lithium-ion batteries is essential to design an effective TMS. In this paper, the surface temperature distribution over a 20Ah lithium-ion polymer battery cell is measured under different charging and discharging conditions. A cell thermal model is then built using the ANSYS Fluent. The simulation results are correlated and validated well with the experimental data. The validated cell thermal model provides a design guideline to thermal management system in the level of battery module and pack.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Temperature Distribution on Lithium-Ion Polymer Battery Cell: Experiment and Modeling\",\"authors\":\"Yiqun Liu, Y. G. Liao, Ming-Chia Lai\",\"doi\":\"10.1109/VTCFall.2019.8890974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the lithium-ion battery is highly dependent on the operating temperature. In order to keep the operating temperature within the optimal range, a thermal management system (TMS) is used to cool down or warm up the battery. Understanding the heat generation characteristics and temperature distribution of the lithium-ion batteries is essential to design an effective TMS. In this paper, the surface temperature distribution over a 20Ah lithium-ion polymer battery cell is measured under different charging and discharging conditions. A cell thermal model is then built using the ANSYS Fluent. The simulation results are correlated and validated well with the experimental data. The validated cell thermal model provides a design guideline to thermal management system in the level of battery module and pack.\",\"PeriodicalId\":6713,\"journal\":{\"name\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2019.8890974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8890974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature Distribution on Lithium-Ion Polymer Battery Cell: Experiment and Modeling
The performance of the lithium-ion battery is highly dependent on the operating temperature. In order to keep the operating temperature within the optimal range, a thermal management system (TMS) is used to cool down or warm up the battery. Understanding the heat generation characteristics and temperature distribution of the lithium-ion batteries is essential to design an effective TMS. In this paper, the surface temperature distribution over a 20Ah lithium-ion polymer battery cell is measured under different charging and discharging conditions. A cell thermal model is then built using the ANSYS Fluent. The simulation results are correlated and validated well with the experimental data. The validated cell thermal model provides a design guideline to thermal management system in the level of battery module and pack.