深单图像肖像重照明

Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, D. Jacobs
{"title":"深单图像肖像重照明","authors":"Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, D. Jacobs","doi":"10.1109/ICCV.2019.00729","DOIUrl":null,"url":null,"abstract":"Conventional physically-based methods for relighting portrait images need to solve an inverse rendering problem, estimating face geometry, reflectance and lighting. However, the inaccurate estimation of face components can cause strong artifacts in relighting, leading to unsatisfactory results. In this work, we apply a physically-based portrait relighting method to generate a large scale, high quality, “in the wild” portrait relighting dataset (DPR). A deep Convolutional Neural Network (CNN) is then trained using this dataset to generate a relit portrait image by using a source image and a target lighting as input. The training procedure regularizes the generated results, removing the artifacts caused by physically-based relighting methods. A GAN loss is further applied to improve the quality of the relit portrait image. Our trained network can relight portrait images with resolutions as high as 1024 × 1024. We evaluate the proposed method on the proposed DPR datset, Flickr portrait dataset and Multi-PIE dataset both qualitatively and quantitatively. Our experiments demonstrate that the proposed method achieves state-of-the-art results. Please refer to https://zhhoper.github.io/dpr.html for dataset and code.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"4 1","pages":"7193-7201"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":"{\"title\":\"Deep Single-Image Portrait Relighting\",\"authors\":\"Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, D. Jacobs\",\"doi\":\"10.1109/ICCV.2019.00729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional physically-based methods for relighting portrait images need to solve an inverse rendering problem, estimating face geometry, reflectance and lighting. However, the inaccurate estimation of face components can cause strong artifacts in relighting, leading to unsatisfactory results. In this work, we apply a physically-based portrait relighting method to generate a large scale, high quality, “in the wild” portrait relighting dataset (DPR). A deep Convolutional Neural Network (CNN) is then trained using this dataset to generate a relit portrait image by using a source image and a target lighting as input. The training procedure regularizes the generated results, removing the artifacts caused by physically-based relighting methods. A GAN loss is further applied to improve the quality of the relit portrait image. Our trained network can relight portrait images with resolutions as high as 1024 × 1024. We evaluate the proposed method on the proposed DPR datset, Flickr portrait dataset and Multi-PIE dataset both qualitatively and quantitatively. Our experiments demonstrate that the proposed method achieves state-of-the-art results. Please refer to https://zhhoper.github.io/dpr.html for dataset and code.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"4 1\",\"pages\":\"7193-7201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"154\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 154

摘要

传统的基于物理的重照明人像图像的方法需要解决一个反向渲染问题,估计人脸的几何形状、反射率和光照。然而,人脸分量的不准确估计会在重光照中产生强烈的伪影,从而导致不满意的结果。在这项工作中,我们应用基于物理的肖像重光照方法来生成大规模,高质量的“野外”肖像重光照数据集(DPR)。然后使用该数据集训练深度卷积神经网络(CNN),通过使用源图像和目标照明作为输入来生成逼真的肖像图像。训练过程对生成的结果进行正则化,去除由基于物理的重光照方法引起的伪影。在此基础上,进一步应用GAN损失来提高图像质量。我们训练的网络可以重亮分辨率高达1024 × 1024的肖像图像。我们对所提出的DPR数据集、Flickr肖像数据集和Multi-PIE数据集进行了定性和定量的评价。我们的实验表明,所提出的方法达到了最先进的结果。请参考https://zhhoper.github.io/dpr.html获取数据集和代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Single-Image Portrait Relighting
Conventional physically-based methods for relighting portrait images need to solve an inverse rendering problem, estimating face geometry, reflectance and lighting. However, the inaccurate estimation of face components can cause strong artifacts in relighting, leading to unsatisfactory results. In this work, we apply a physically-based portrait relighting method to generate a large scale, high quality, “in the wild” portrait relighting dataset (DPR). A deep Convolutional Neural Network (CNN) is then trained using this dataset to generate a relit portrait image by using a source image and a target lighting as input. The training procedure regularizes the generated results, removing the artifacts caused by physically-based relighting methods. A GAN loss is further applied to improve the quality of the relit portrait image. Our trained network can relight portrait images with resolutions as high as 1024 × 1024. We evaluate the proposed method on the proposed DPR datset, Flickr portrait dataset and Multi-PIE dataset both qualitatively and quantitatively. Our experiments demonstrate that the proposed method achieves state-of-the-art results. Please refer to https://zhhoper.github.io/dpr.html for dataset and code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信