三元张量的特征格式

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
V. Beorchia, Francesco Galuppi, Lorenzo Venturello
{"title":"三元张量的特征格式","authors":"V. Beorchia, Francesco Galuppi, Lorenzo Venturello","doi":"10.1137/20M1355410","DOIUrl":null,"url":null,"abstract":"We study projective schemes arising from eigenvectors of tensors, called eigenschemes. After some general results, we give a birational description of the variety parametrizing eigenschemes of general ternary symmetric tensors and we compute its dimension. Moreover, we characterize the locus of triples of homogeneous polynomials defining the eigenscheme of a ternary symmetric tensor. Our results allow us to implement algorithms to check whether a given set of points is the eigenscheme of a symmetric tensor, and to reconstruct the tensor. Finally, we give a geometric characterization of all reduced zero-dimensional eigenschemes. The techniques we use rely both on classical and modern complex projective algebraic geometry.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Eigenschemes of Ternary Tensors\",\"authors\":\"V. Beorchia, Francesco Galuppi, Lorenzo Venturello\",\"doi\":\"10.1137/20M1355410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study projective schemes arising from eigenvectors of tensors, called eigenschemes. After some general results, we give a birational description of the variety parametrizing eigenschemes of general ternary symmetric tensors and we compute its dimension. Moreover, we characterize the locus of triples of homogeneous polynomials defining the eigenscheme of a ternary symmetric tensor. Our results allow us to implement algorithms to check whether a given set of points is the eigenscheme of a symmetric tensor, and to reconstruct the tensor. Finally, we give a geometric characterization of all reduced zero-dimensional eigenschemes. The techniques we use rely both on classical and modern complex projective algebraic geometry.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20M1355410\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1355410","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

我们研究由张量的特征向量产生的投影格式,称为特征格式。在得到一些一般性的结果后,我们给出了一般三元对称张量的各种参数化特征格式的两种描述,并计算了它的维数。此外,我们刻画了齐次多项式的三重轨迹,定义了三元对称张量的本征格式。我们的结果允许我们实现算法来检查给定的一组点是否是对称张量的特征方案,并重建张量。最后,给出了所有约简零维特征格式的几何表征。我们使用的技术依赖于古典和现代复杂射影代数几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenschemes of Ternary Tensors
We study projective schemes arising from eigenvectors of tensors, called eigenschemes. After some general results, we give a birational description of the variety parametrizing eigenschemes of general ternary symmetric tensors and we compute its dimension. Moreover, we characterize the locus of triples of homogeneous polynomials defining the eigenscheme of a ternary symmetric tensor. Our results allow us to implement algorithms to check whether a given set of points is the eigenscheme of a symmetric tensor, and to reconstruct the tensor. Finally, we give a geometric characterization of all reduced zero-dimensional eigenschemes. The techniques we use rely both on classical and modern complex projective algebraic geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信