软弱和CO-WEAK贝尔模块:موديلاتبييرالضعيفةوالضعيفةالمرافقة

Eaman Al-Khouja, Magd Alfakhory, Hamza Hakmi Eaman Al-Khouja, Magd Alfakhory, Hamza Hakmi
{"title":"软弱和CO-WEAK贝尔模块:موديلاتبييرالضعيفةوالضعيفةالمرافقة","authors":"Eaman Al-Khouja, Magd Alfakhory, Hamza Hakmi Eaman Al-Khouja, Magd Alfakhory, Hamza Hakmi","doi":"10.26389/ajsrp.d010721","DOIUrl":null,"url":null,"abstract":"The object of this paper is study the notions of weak Baer and weak Rickart rings and modules. We obtained many characterizations of weak Rickart rings and provide their properties. Relations ship between a weak Rickart (weak Baer) module and its endomorphism ring are studied. We proved that a weak Baer module with no infinite set of nonzero orthogonal idempotent elements in its endomorphism ring is precisely a Baer module. In addition, the endomorphism ring of a semi-projective weak Rickart module is semi-potent and the endomorphism ring of a semi-injective coweak Rickart module is semi-potent. Furthermore, we show that a free module is weak Baer if and only if its endomorphism ring is left weak Baer.","PeriodicalId":16473,"journal":{"name":"Journal of natural sciences, life and applied sciences","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEAK and CO-WEAK BAER MODULES: موديلات بيير الضعيفة والضعيفة المرافقة\",\"authors\":\"Eaman Al-Khouja, Magd Alfakhory, Hamza Hakmi Eaman Al-Khouja, Magd Alfakhory, Hamza Hakmi\",\"doi\":\"10.26389/ajsrp.d010721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of this paper is study the notions of weak Baer and weak Rickart rings and modules. We obtained many characterizations of weak Rickart rings and provide their properties. Relations ship between a weak Rickart (weak Baer) module and its endomorphism ring are studied. We proved that a weak Baer module with no infinite set of nonzero orthogonal idempotent elements in its endomorphism ring is precisely a Baer module. In addition, the endomorphism ring of a semi-projective weak Rickart module is semi-potent and the endomorphism ring of a semi-injective coweak Rickart module is semi-potent. Furthermore, we show that a free module is weak Baer if and only if its endomorphism ring is left weak Baer.\",\"PeriodicalId\":16473,\"journal\":{\"name\":\"Journal of natural sciences, life and applied sciences\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of natural sciences, life and applied sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26389/ajsrp.d010721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of natural sciences, life and applied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26389/ajsrp.d010721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了弱Baer环和弱Rickart环及模的概念。我们得到了弱Rickart环的许多特征,并给出了它们的性质。研究了弱Rickart(弱Baer)模与其自同态环之间的关系。证明了在其自同态环上不存在无限非零正交幂等元集的弱Baer模就是Baer模。此外,半射影弱Rickart模的自同态环是半幂幂的,半内射协弱Rickart模的自同态环是半幂幂的。进一步证明了一个自由模是弱贝尔的当且仅当其自同态环是左弱贝尔的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WEAK and CO-WEAK BAER MODULES: موديلات بيير الضعيفة والضعيفة المرافقة
The object of this paper is study the notions of weak Baer and weak Rickart rings and modules. We obtained many characterizations of weak Rickart rings and provide their properties. Relations ship between a weak Rickart (weak Baer) module and its endomorphism ring are studied. We proved that a weak Baer module with no infinite set of nonzero orthogonal idempotent elements in its endomorphism ring is precisely a Baer module. In addition, the endomorphism ring of a semi-projective weak Rickart module is semi-potent and the endomorphism ring of a semi-injective coweak Rickart module is semi-potent. Furthermore, we show that a free module is weak Baer if and only if its endomorphism ring is left weak Baer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信