基于情感分析的网络远程医疗视频评估框架

Q4 Mathematics
P. M. Arunkumar, S. Chandramathi, S. Kannimuthu
{"title":"基于情感分析的网络远程医疗视频评估框架","authors":"P. M. Arunkumar, S. Chandramathi, S. Kannimuthu","doi":"10.1504/ijdats.2019.103755","DOIUrl":null,"url":null,"abstract":"Telemedicine services through internet and mobile devices need effective medical video delivery systems. This work describes a novel framework to study the assessment of internet-based telemedicine videos using sentiment analysis. The dataset comprises more than 1,000 text comments of medical experts collected from various medical animation videos of Youtube repository. The proposed framework deploys machine learning classifiers such as Bayes net, KNN, C 4.5 decision tree, support vector machine (SVM) and SVM with particle swarm optimisation (SVM-PSO) to infer opinion mining outputs. The results portray that SVM-PSO classifier performs better in assessing the reviews of medical video content with more than 80% accuracy. The model's inference of precision and recall values using SVM-PSO algorithm shows 87.8% and 85.57% respectively and henceforth underlines its superiority over other classifiers. The concepts of sentiment analysis can be applied effectively to the web-based user comments of medical videos and the end results can be highly critical to enhance the reputation of telemedicine education across the globe.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"21 1","pages":"328-336"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sentiment analysis-based framework for assessing internet telemedicine videos\",\"authors\":\"P. M. Arunkumar, S. Chandramathi, S. Kannimuthu\",\"doi\":\"10.1504/ijdats.2019.103755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Telemedicine services through internet and mobile devices need effective medical video delivery systems. This work describes a novel framework to study the assessment of internet-based telemedicine videos using sentiment analysis. The dataset comprises more than 1,000 text comments of medical experts collected from various medical animation videos of Youtube repository. The proposed framework deploys machine learning classifiers such as Bayes net, KNN, C 4.5 decision tree, support vector machine (SVM) and SVM with particle swarm optimisation (SVM-PSO) to infer opinion mining outputs. The results portray that SVM-PSO classifier performs better in assessing the reviews of medical video content with more than 80% accuracy. The model's inference of precision and recall values using SVM-PSO algorithm shows 87.8% and 85.57% respectively and henceforth underlines its superiority over other classifiers. The concepts of sentiment analysis can be applied effectively to the web-based user comments of medical videos and the end results can be highly critical to enhance the reputation of telemedicine education across the globe.\",\"PeriodicalId\":38582,\"journal\":{\"name\":\"International Journal of Data Analysis Techniques and Strategies\",\"volume\":\"21 1\",\"pages\":\"328-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Analysis Techniques and Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdats.2019.103755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdats.2019.103755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

摘要

通过互联网和移动设备提供的远程医疗服务需要有效的医疗视频传输系统。这项工作描述了一个使用情感分析研究基于互联网的远程医疗视频评估的新框架。该数据集包括从Youtube知识库的各种医学动画视频中收集的1000多篇医学专家的文字评论。提出的框架部署机器学习分类器,如贝叶斯网络,KNN, c4.5决策树,支持向量机(SVM)和支持向量机与粒子群优化(SVM- pso)来推断意见挖掘输出。结果表明,SVM-PSO分类器在评估医学视频内容评论方面表现更好,准确率超过80%。该模型使用SVM-PSO算法对准确率和召回率的推断值分别达到87.8%和85.57%,从而突出了其优于其他分类器的优势。情感分析的概念可以有效地应用于基于网络的医疗视频用户评论,最终结果对于提高全球远程医疗教育的声誉至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment analysis-based framework for assessing internet telemedicine videos
Telemedicine services through internet and mobile devices need effective medical video delivery systems. This work describes a novel framework to study the assessment of internet-based telemedicine videos using sentiment analysis. The dataset comprises more than 1,000 text comments of medical experts collected from various medical animation videos of Youtube repository. The proposed framework deploys machine learning classifiers such as Bayes net, KNN, C 4.5 decision tree, support vector machine (SVM) and SVM with particle swarm optimisation (SVM-PSO) to infer opinion mining outputs. The results portray that SVM-PSO classifier performs better in assessing the reviews of medical video content with more than 80% accuracy. The model's inference of precision and recall values using SVM-PSO algorithm shows 87.8% and 85.57% respectively and henceforth underlines its superiority over other classifiers. The concepts of sentiment analysis can be applied effectively to the web-based user comments of medical videos and the end results can be highly critical to enhance the reputation of telemedicine education across the globe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信