基于物联网技术的带液位传感器和控制器的太阳能泵系统的设计与开发

Chinonyelum Ejimuda, Kingsley Okoli
{"title":"基于物联网技术的带液位传感器和控制器的太阳能泵系统的设计与开发","authors":"Chinonyelum Ejimuda, Kingsley Okoli","doi":"10.2118/207188-ms","DOIUrl":null,"url":null,"abstract":"\n Renewable energy in our world today has greatly helped the ecosystem by reducing the amount of carbon content in the atmosphere. Recent studies have shown that the dependence on the National grid and fossil fuels for generating power for pumps is becoming alarming and as such, an alternative source for energy generation to power the pump system necessitated this research. The research relies on solar-generated power for driving pumps as opposed to fossil fuels. A submersible centrifugal pump was used because of its wide usage in various industries such as Oil and Energy, Pharmaceutical, Breweries, Production industries, Water corporations, Domestic and Commercial buildings, etc.\n We designed and constructed an automatic solar-powered pump system, integrated, and programmed the sensors using Arduino microcontroller and C++ programming language, respectively. We analyzed the telemetry data from the sensors and predicted the illuminance of light on the solar panel and sent the information via a web server using a GSM module. The solar-based pumping system consists of a submersible centrifugal pump, solar panel, solar charge controller, battery, remote controller, GSM module, photo sensor and a liquid level sensor. The photo sensor returns values ranging from 0 to 1023. The higher values: 700 – 1023 indicate that the sensor is in darker surroundings. The lower values: 0 - 650 indicate lighter surroundings when there is sufficient light on the sensor or its surroundings on the web server which display the plotted values in real-time. The system has been found to be viable and economical in the long run compared to the conventional system which uses fossil fuels. The solar energy received from the sun is converted to electrical energy by the solar panel. A proportion of the energy is used during the day while some is stored in the battery to be used at night or when the weather is cloudy. The controller regulates the liquid level in storage with the aid of liquid level sensor and affords the user the opportunity to control the system remotely. This system can be used for small and remote applications.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of a Solar-Powered Pump System with Liquid Level Sensor and Controller Using Internet of Things Iot Technology\",\"authors\":\"Chinonyelum Ejimuda, Kingsley Okoli\",\"doi\":\"10.2118/207188-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Renewable energy in our world today has greatly helped the ecosystem by reducing the amount of carbon content in the atmosphere. Recent studies have shown that the dependence on the National grid and fossil fuels for generating power for pumps is becoming alarming and as such, an alternative source for energy generation to power the pump system necessitated this research. The research relies on solar-generated power for driving pumps as opposed to fossil fuels. A submersible centrifugal pump was used because of its wide usage in various industries such as Oil and Energy, Pharmaceutical, Breweries, Production industries, Water corporations, Domestic and Commercial buildings, etc.\\n We designed and constructed an automatic solar-powered pump system, integrated, and programmed the sensors using Arduino microcontroller and C++ programming language, respectively. We analyzed the telemetry data from the sensors and predicted the illuminance of light on the solar panel and sent the information via a web server using a GSM module. The solar-based pumping system consists of a submersible centrifugal pump, solar panel, solar charge controller, battery, remote controller, GSM module, photo sensor and a liquid level sensor. The photo sensor returns values ranging from 0 to 1023. The higher values: 700 – 1023 indicate that the sensor is in darker surroundings. The lower values: 0 - 650 indicate lighter surroundings when there is sufficient light on the sensor or its surroundings on the web server which display the plotted values in real-time. The system has been found to be viable and economical in the long run compared to the conventional system which uses fossil fuels. The solar energy received from the sun is converted to electrical energy by the solar panel. A proportion of the energy is used during the day while some is stored in the battery to be used at night or when the weather is cloudy. The controller regulates the liquid level in storage with the aid of liquid level sensor and affords the user the opportunity to control the system remotely. This system can be used for small and remote applications.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207188-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207188-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当今世界的可再生能源通过减少大气中的碳含量,极大地帮助了生态系统。最近的研究表明,对国家电网和化石燃料的依赖正在变得令人担忧,因此,需要一种替代能源来为泵系统提供动力。这项研究依靠太阳能来驱动水泵,而不是化石燃料。潜水泵广泛应用于石油、能源、医药、酿酒、生产、水务、住宅、商业建筑等行业。我们设计并搭建了一个太阳能自动泵系统,并分别使用Arduino微控制器和c++编程语言对传感器进行了集成和编程。我们分析了来自传感器的遥测数据,预测了太阳能板上的照度,并通过使用GSM模块的web服务器发送了这些信息。该太阳能泵系统由潜水泵、太阳能电池板、太阳能充电控制器、电池、遥控器、GSM模块、光电传感器和液位传感器组成。光传感器返回的值范围从0到1023。较高的值:700 - 1023表示传感器处于较暗的环境中。较低的值:0 - 650表示环境较亮,当传感器或其周围的web服务器上有足够的光线时,可以实时显示绘制的值。与使用化石燃料的传统系统相比,从长远来看,该系统是可行的和经济的。从太阳接收到的太阳能通过太阳能板转换成电能。一部分能量在白天使用,而一些能量储存在电池中,以便在晚上或天气多云时使用。控制器借助液位传感器调节存储中的液位,并为用户提供远程控制系统的机会。该系统可用于小型和远程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Development of a Solar-Powered Pump System with Liquid Level Sensor and Controller Using Internet of Things Iot Technology
Renewable energy in our world today has greatly helped the ecosystem by reducing the amount of carbon content in the atmosphere. Recent studies have shown that the dependence on the National grid and fossil fuels for generating power for pumps is becoming alarming and as such, an alternative source for energy generation to power the pump system necessitated this research. The research relies on solar-generated power for driving pumps as opposed to fossil fuels. A submersible centrifugal pump was used because of its wide usage in various industries such as Oil and Energy, Pharmaceutical, Breweries, Production industries, Water corporations, Domestic and Commercial buildings, etc. We designed and constructed an automatic solar-powered pump system, integrated, and programmed the sensors using Arduino microcontroller and C++ programming language, respectively. We analyzed the telemetry data from the sensors and predicted the illuminance of light on the solar panel and sent the information via a web server using a GSM module. The solar-based pumping system consists of a submersible centrifugal pump, solar panel, solar charge controller, battery, remote controller, GSM module, photo sensor and a liquid level sensor. The photo sensor returns values ranging from 0 to 1023. The higher values: 700 – 1023 indicate that the sensor is in darker surroundings. The lower values: 0 - 650 indicate lighter surroundings when there is sufficient light on the sensor or its surroundings on the web server which display the plotted values in real-time. The system has been found to be viable and economical in the long run compared to the conventional system which uses fossil fuels. The solar energy received from the sun is converted to electrical energy by the solar panel. A proportion of the energy is used during the day while some is stored in the battery to be used at night or when the weather is cloudy. The controller regulates the liquid level in storage with the aid of liquid level sensor and affords the user the opportunity to control the system remotely. This system can be used for small and remote applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信