加厚表面的适当联系和广义泰特猜想

IF 0.6 3区 数学 Q3 MATHEMATICS
H. Boden, H. Karimi, Adam S. Sikora
{"title":"加厚表面的适当联系和广义泰特猜想","authors":"H. Boden, H. Karimi, Adam S. Sikora","doi":"10.2140/agt.2023.23.2271","DOIUrl":null,"url":null,"abstract":"The Kauffman bracket of classical links extends to an invariant of links in an arbitrary oriented 3-manifold $M$ with values in the skein module of $M$. In this paper, we consider the skein bracket in case $M$ is a thickened surface. We develop a theory of adequacy for link diagrams on surfaces and show that any alternating link diagram on a surface is skein adequate. We apply our theory to establish the first and second Tait conjectures for adequate link diagrams on surfaces. These are the statements that any adequate link diagram has minimal crossing number, and any two adequate diagrams of the same link have the same writhe. \nGiven a link diagram $D$ on a surface $\\Sigma$, we use $[D]_\\Sigma$ to denote its skein bracket. If $D$ has minimal genus, we show that $${\\rm span}([D]_\\Sigma) \\leq 4c(D) + 4 |D|-4g(\\Sigma),$$ where $|D|$ is the number of connected components of $D$, $c(D)$ is the number of crossings, and $g(\\Sigma)$ is the genus of $\\Sigma.$ This extends a classical result proved by Kauffman, Murasugi, and Thistlethwaite. We further show that the above inequality is an equality if and only if $D$ is weakly alternating, namely if $D$ is the connected sum of an alternating link diagram on $\\Sigma$ with one or more alternating link diagrams on $S^2$. This last statement is a generalization of a well-known result for classical links due to Thistlethwaite, and it implies that the skein bracket detects the crossing number for weakly alternating links. As an application, we show that the crossing number is additive under connected sum for adequate links in thickened surfaces.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"54 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adequate links in thickened surfaces and the generalized Tait conjectures\",\"authors\":\"H. Boden, H. Karimi, Adam S. Sikora\",\"doi\":\"10.2140/agt.2023.23.2271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kauffman bracket of classical links extends to an invariant of links in an arbitrary oriented 3-manifold $M$ with values in the skein module of $M$. In this paper, we consider the skein bracket in case $M$ is a thickened surface. We develop a theory of adequacy for link diagrams on surfaces and show that any alternating link diagram on a surface is skein adequate. We apply our theory to establish the first and second Tait conjectures for adequate link diagrams on surfaces. These are the statements that any adequate link diagram has minimal crossing number, and any two adequate diagrams of the same link have the same writhe. \\nGiven a link diagram $D$ on a surface $\\\\Sigma$, we use $[D]_\\\\Sigma$ to denote its skein bracket. If $D$ has minimal genus, we show that $${\\\\rm span}([D]_\\\\Sigma) \\\\leq 4c(D) + 4 |D|-4g(\\\\Sigma),$$ where $|D|$ is the number of connected components of $D$, $c(D)$ is the number of crossings, and $g(\\\\Sigma)$ is the genus of $\\\\Sigma.$ This extends a classical result proved by Kauffman, Murasugi, and Thistlethwaite. We further show that the above inequality is an equality if and only if $D$ is weakly alternating, namely if $D$ is the connected sum of an alternating link diagram on $\\\\Sigma$ with one or more alternating link diagrams on $S^2$. This last statement is a generalization of a well-known result for classical links due to Thistlethwaite, and it implies that the skein bracket detects the crossing number for weakly alternating links. As an application, we show that the crossing number is additive under connected sum for adequate links in thickened surfaces.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2271\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2271","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

经典连杆的Kauffman括号扩展为任意定向3流形$M$中连杆的不变量,其值在$M$的串模中。本文考虑$M$为加厚表面时的绞丝支架。我们提出了曲面上连杆图的充分性理论,并证明了任意曲面上的交变连杆图都是充分的。我们应用我们的理论建立了曲面上足够的连接图的第一个和第二个Tait猜想。这是任何适当的连接图具有最小交叉数的陈述,并且同一连接的任意两个适当的图具有相同的弯曲。给定表面$\Sigma$上的链接图$D$,我们使用$[D]_\Sigma$表示其绞接括号。如果$D$有最小的属,我们证明$${\rm span}([D]_\Sigma) \leq 4c(D) + 4 |D|-4g(\Sigma),$$,其中$|D|$是$D$的连通成分数,$c(D)$是交叉数,$g(\Sigma)$是$\Sigma.$的属。这扩展了由Kauffman, Murasugi和Thistlethwaite证明的经典结果。我们进一步证明,当且仅当$D$是弱交替的,即$D$是$\Sigma$上的一个交替链接图与$S^2$上的一个或多个交替链接图的连通和时,上述不等式是一个等式。最后这句话是由Thistlethwaite引起的经典链接的一个众所周知的结果的推广,它意味着绞丝括号检测弱交替链接的交叉数。作为一个应用,我们证明了在加厚的曲面上,对于足够的连杆,交叉数是连通和下的可加性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adequate links in thickened surfaces and the generalized Tait conjectures
The Kauffman bracket of classical links extends to an invariant of links in an arbitrary oriented 3-manifold $M$ with values in the skein module of $M$. In this paper, we consider the skein bracket in case $M$ is a thickened surface. We develop a theory of adequacy for link diagrams on surfaces and show that any alternating link diagram on a surface is skein adequate. We apply our theory to establish the first and second Tait conjectures for adequate link diagrams on surfaces. These are the statements that any adequate link diagram has minimal crossing number, and any two adequate diagrams of the same link have the same writhe. Given a link diagram $D$ on a surface $\Sigma$, we use $[D]_\Sigma$ to denote its skein bracket. If $D$ has minimal genus, we show that $${\rm span}([D]_\Sigma) \leq 4c(D) + 4 |D|-4g(\Sigma),$$ where $|D|$ is the number of connected components of $D$, $c(D)$ is the number of crossings, and $g(\Sigma)$ is the genus of $\Sigma.$ This extends a classical result proved by Kauffman, Murasugi, and Thistlethwaite. We further show that the above inequality is an equality if and only if $D$ is weakly alternating, namely if $D$ is the connected sum of an alternating link diagram on $\Sigma$ with one or more alternating link diagrams on $S^2$. This last statement is a generalization of a well-known result for classical links due to Thistlethwaite, and it implies that the skein bracket detects the crossing number for weakly alternating links. As an application, we show that the crossing number is additive under connected sum for adequate links in thickened surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信